SLC25A32 promotes malignant progression of glioblastoma by activating PI3K-AKT signaling pathway

[1]  M. Kanehisa,et al.  KEGG for taxonomy-based analysis of pathways and genomes , 2022, Nucleic Acids Res..

[2]  Wen Zhang,et al.  Mitochondrial FAD shortage in SLC25A32 deficiency affects folate-mediated one-carbon metabolism , 2022, Cellular and Molecular Life Sciences.

[3]  Lucy F. Stead,et al.  Glioma progression is shaped by genetic evolution and microenvironment interactions , 2022, Cell.

[4]  W. Tam,et al.  A new foe in folate metabolism , 2021, Nature Metabolism.

[5]  A. J. Vargas López Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. , 2021, Neuro-oncology.

[6]  A. De Grassi,et al.  Differential Expression of ADP/ATP Carriers as a Biomarker of Metabolic Remodeling and Survival in Kidney Cancers , 2020, Biomolecules.

[7]  R. Wanders,et al.  Disorders of flavin adenine dinucleotide metabolism: MADD and related deficiencies. , 2020, The international journal of biochemistry & cell biology.

[8]  W. Sommergruber,et al.  KRAS-regulated glutamine metabolism requires UCP2-mediated aspartate transport to support pancreatic cancer growth , 2020, Nature Metabolism.

[9]  X. Breakefield,et al.  Extracellular Vesicle-Mediated Bilateral Communication between Glioblastoma and Astrocytes , 2020, Trends in Neurosciences.

[10]  L. Rochette,et al.  Mitochondrial SLC25 Carriers: Novel Targets for Cancer Therapy , 2020, Molecules.

[11]  Raymond Y Huang,et al.  Glioblastoma in Adults: A Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) Consensus Review on Current Management and Future Directions. , 2020, Neuro-oncology.

[12]  I. Kovalenko,et al.  SLC25A32 sustains cancer cell proliferation by regulating flavin adenine nucleotide (FAD) metabolism , 2020, Oncotarget.

[13]  G. Giaccone,et al.  Inhibition of the mitochondrial citrate carrier, Slc25a1, reverts steatosis, glucose intolerance, and inflammation in preclinical models of NAFLD/NASH , 2020, Cell Death & Differentiation.

[14]  V. Iacobazzi,et al.  Metabolic routes in inflammation: the citrate pathway and its potential as therapeutic target. , 2020, Current medicinal chemistry.

[15]  R. Bjerkvig,et al.  Interfering with long non-coding RNA MIR22HG processing inhibits glioblastoma progression through suppression of Wnt/β-catenin signalling , 2019, Brain : a journal of neurology.

[16]  Minoru Kanehisa,et al.  Toward understanding the origin and evolution of cellular organisms , 2019, Protein science : a publication of the Protein Society.

[17]  J. Gould Breaking down the epidemiology of brain cancer , 2018, Nature.

[18]  B. Wlodarczyk,et al.  Formate rescues neural tube defects caused by mutations in Slc25a32 , 2018, Proceedings of the National Academy of Sciences.

[19]  Amrita Cheema,et al.  The mitochondrial citrate carrier, SLC25A1, drives stemness and therapy resistance in non-small cell lung cancer , 2018, Cell Death & Differentiation.

[20]  Jie Liu,et al.  Dysregulation of metallothionein and circadian genes in human hepatocellular carcinoma , 2017, Chronobiology international.

[21]  A. De Grassi,et al.  AGC1/2, the mitochondrial aspartate-glutamate carriers. , 2016, Biochimica et biophysica acta.

[22]  Karen H. Vousden,et al.  Serine and one-carbon metabolism in cancer , 2016, Nature Reviews Cancer.

[23]  J. Barnholtz-Sloan,et al.  Response to "the epidemiology of glioma in adults: a 'state of the science' review". , 2015, Neuro-oncology.

[24]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[25]  A. Wellstein,et al.  SLC25A1, or CIC, is a novel transcriptional target of mutant p53 and a negative tumor prognostic marker , 2014, Oncotarget.

[26]  C. Baines,et al.  Physiological and pathological roles of mitochondrial SLC25 carriers. , 2013, The Biochemical journal.

[27]  M. Hediger,et al.  The ABCs of membrane transporters in health and disease (SLC series): Introduction , 2013, Molecular aspects of medicine.

[28]  M. Babot,et al.  The mitochondrial ADP/ATP carrier (SLC25 family): pathological implications of its dysfunction. , 2013, Molecular aspects of medicine.

[29]  F. Palmieri The mitochondrial transporter family SLC25: identification, properties and physiopathology. , 2013, Molecular aspects of medicine.

[30]  R. Gaedigk,et al.  Red blood cell folate concentrations and polyglutamate distribution in juvenile arthritis: predictors of folate variability , 2012, Pharmacogenetics and genomics.

[31]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[32]  H. Waterham,et al.  Identification of the human mitochondrial FAD transporter and its potential role in multiple acyl-CoA dehydrogenase deficiency. , 2005, Molecular genetics and metabolism.

[33]  Andreas Rolfs,et al.  The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins , 2004, Pflügers Archiv.

[34]  R. Moran,et al.  Retrovirally mediated complementation of the glyB phenotype. Cloning of a human gene encoding the carrier for entry of folates into mitochondria. , 2000, The Journal of biological chemistry.

[35]  J. Wolff,et al.  Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. , 1948, The New England journal of medicine.

[36]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[37]  M. Kanehisa,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[38]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..