Effect of clustering on the surface plasmon band in thin films of metallic nanoparticles

Abstract. We theoretically investigate the optical response of ensembles of polarizable metallic nanoparticles (NPs) that form (1) submonolayer films of particles adsorbed on a dielectric substrate, considered as two-dimensional (2-D) systems, and (2) thin three-dimensional (3-D) films, where NPs are embedded in a dielectric matrix. For system (1), the effect of NPs’ distance to the substrate is taken into account. In both cases, we find that short-range clustering leads to a broadening and a spectral shift of the absorption band related to the surface plasmon resonance (SPR) in individual NPs. We show that the clustering can help in achieving spectrally broad SPR bands, especially if NPs aggregate into fractal clusters, which can be interesting for some applications such as surface-enhanced Raman scattering. In particular, submonolayer films on NPs generated using the diffusion-limited aggregation algorithm produce sizable and spectrally broad absorption, which can be tuned to the visible range by choosing an appropriate capping and/or substrate material. Calculated results for thin 3-D films are compared with experimental data obtained for Au/TiO2 nanocomposite layers produced by reactive cosputtering.

[1]  Mantese,et al.  Infrared properties of Pt/Al2O3 cermet films. , 1991, Physical review. B, Condensed matter.

[2]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[3]  François Hache,et al.  The optical kerr effect in small metal particles and metal colloids: The case of gold , 1988 .

[4]  L. Sander,et al.  Diffusion-limited aggregation, a kinetic critical phenomenon , 1981 .

[5]  Dongha Shin,et al.  Ag Nanoparticle-Mediated Raman Scattering of 4-Aminobenzenethiol on a Pt Substrate , 2010 .

[6]  Vadim A. Markel,et al.  Theory and numerical simulation of optical properties of fractal clusters. , 1991, Physical review. B, Condensed matter.

[7]  Harry A. Atwater,et al.  Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles , 2005 .

[8]  N. Peres,et al.  Mechanism for graphene-based optoelectronic switches by tuning surface plasmon-polaritons in monolayer graphene , 2010, 1009.1739.

[9]  K. Ariga,et al.  Gold Nanoparticles Aggregation: Drastic Effect of Cooperative Functionalities in a Single Molecular Conjugate , 2012 .

[10]  T. Pedersen,et al.  Polarizability of supported metal nanoparticles: Mehler-Fock approach , 2012 .

[11]  Vadim A. Markel,et al.  Small-particle composites. I. Linear optical properties. , 1996, Physical review. B, Condensed matter.

[12]  P. Etchegoin,et al.  An analytic model for the optical properties of gold. , 2006, The Journal of chemical physics.

[13]  Pablo G. Etchegoin,et al.  Erratum: “An analytic model for the optical properties of gold” [J. Chem. Phys. 125, 164705 (2006)] , 2007 .

[14]  Ibrahim Abdulhalim,et al.  Sensitivity‐enhancement methods for surface plasmon sensors , 2011 .

[15]  Vladimir M. Shalaev,et al.  Saturation effect in the optical response of Ag-nanoparticle fractal aggregates , 2006 .

[16]  F. Vaz,et al.  Functional and optical properties of Au :TiO2 nanocomposite films : the influence of thermal annealing , 2010 .

[17]  Katrin Kneipp,et al.  Surface-enhanced Raman scattering , 2006 .

[18]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[19]  M. Vasilevskiy,et al.  Probing spatial correlations in a system of polarizable nanoparticles via measuring its optical extinction spectrum , 2013, 1303.0413.

[20]  D. Bedeaux,et al.  The polarizability of a truncated sphere on a substrate II , 1987 .

[21]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[22]  Anda,et al.  Effective dielectric response of semiconductor composites. , 1996, Physical review. B, Condensed matter.

[23]  Fractals and phase transitions , 1985 .

[24]  Takayuki Okamoto,et al.  Near-field spectral analysis of metallic beads , 2001 .

[25]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[26]  M. Vasilevskiy Effective dielectric response of composites containing uniaxial inclusions , 2000 .

[27]  Domenico Pacifici,et al.  Plasmonic nanostructure design for efficient light coupling into solar cells. , 2008, Nano letters.

[28]  George,et al.  Giant fluctuations of local optical fields in fractal clusters. , 1994, Physical review letters.

[29]  B. Poelsema,et al.  Optical Characterization of Thin Colloidal Gold Films by Spectroscopic Ellipsometry , 2002 .

[30]  R. Barrera,et al.  Multipolar and disorder effects in the optical properties of granular composites , 1998 .

[31]  Albano Cavaleiro,et al.  Nanoscale color control of TiO2 films with embedded Au nanoparticles , 2010 .

[32]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[33]  Jaime E. Santos,et al.  Renormalization of nanoparticle polarizability in the vicinity of a graphene-covered interface , 2014, 1409.7326.

[34]  Filipa C. R. Peres,et al.  Near-field resonant energy transfer between spherical quantum dots , 2014, Other Conferences.

[35]  Jianfang Wang,et al.  Effect of the dielectric properties of substrates on the scattering patterns of gold nanorods. , 2011, ACS nano.

[36]  L. Liz‐Marzán,et al.  Optical Properties of Thin Films of Au@SiO2 Particles , 2001 .