Synthesis of Molybdenum Disulfide Nanowire Arrays Using a Block Copolymer Template

A simple route for the synthesis of arrays of sub-20-nm-wide molybdenum disulfide (MoS2) nanowires using a self-assembled cylinder forming poly(styrene-b-2-vinylpyridine) thin films is demonstrated. The protonated 2-vinylpyridine selectively seeds molybdenum precursors in the aqueous solution, and the precursors are converted to molybdenum sulfide during a sulfur annealing process. An ultraviolet cross-linking step is introduced to ensure the successful transfer of the morphologies of the block copolymer templates to the MoS2 nanowires. The nanowires transition from an amorphous to a crystalline MoS2 phase upon thermal annealing in the presence of sulfur, as confirmed by X-ray photoelectron spectroscopy, Raman spectroscopy, X-ray diffraction, and transmission electron microscopy. This work provides a pathway to large area, dense, spatially localized arrays of transition metal dichalcogenide nanowires for catalytic and sensing applications.

[1]  R. Hamers,et al.  Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2. , 2014, Journal of the American Chemical Society.

[2]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[3]  Jonathan W. Choi,et al.  Transfer of pre-assembled block copolymer thin film to nanopattern unconventional substrates. , 2014, ACS applied materials & interfaces.

[4]  Dong Ha Kim,et al.  Organic–Inorganic Nanohybridization by Block Copolymer Thin Films , 2005 .

[5]  Aaron D. Franklin,et al.  Nanomaterials in transistors: From high-performance to thin-film applications , 2015, Science.

[6]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[7]  C. Nordling,et al.  Molecular Spectroscopy by Means of ESCA II. Sulfur compounds. Correlation of electron binding energy with structure , 1970 .

[8]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[9]  Byoung Hun Lee,et al.  Bifunctional sensing characteristics of chemical vapor deposition synthesized atomic-layered MoS2. , 2015, ACS applied materials & interfaces.

[10]  Xiaogan Liang,et al.  MoS2 transistors fabricated via plasma-assisted nanoprinting of few-layer MoS2 flakes into large-area arrays. , 2013, ACS nano.

[11]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[12]  Zhenyu Jin,et al.  Novel chemical route for atomic layer deposition of MoS₂ thin film on SiO₂/Si substrate. , 2014, Nanoscale.

[13]  Desheng Kong,et al.  Synthesis of MoS2 and MoSe2 films with vertically aligned layers. , 2013, Nano letters.

[14]  Lev Rapoport,et al.  Controlled doping of MS2 (M=W, Mo) nanotubes and fullerene-like nanoparticles. , 2012, Angewandte Chemie.

[15]  C. Bazuin,et al.  Double-striped metallic patterns from PS-b-P4VP nanostrand templates. , 2014, ACS applied materials & interfaces.

[16]  F. Jellinek,et al.  Molybdenum and Niobium Sulphides , 1960, Nature.

[17]  Atul S. Chaudhari,et al.  Fabrication of MoS2 Nanowire Arrays and Layered Structures via the Self‐Assembly of Block Copolymers , 2016 .

[18]  A. Stein,et al.  Molybdenum Sulfide Nanoparticles in Block Copolymer Micelles: Synthesis and Tribological Properties , 2004 .

[19]  B. Vincent,et al.  Equilibrium and kinetic aspects of the pH-dependent swelling of poly(2-vinylpyridine-co-styrene) microgels , 1997 .

[20]  N. Lenenko,et al.  Synthesis and study of self-organization of organo-inorganic nanostructures based on cationic poly(meth)acrylates and molybdenum disulfide single layers , 2013, Polymer Science Series B.

[21]  B. Chu,et al.  Use of block copolymer micelles on formation of hollow MoO3 nanospheres , 2000 .

[22]  J. Switzer,et al.  Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis. , 2005, The journal of physical chemistry. B.

[23]  S. Seal,et al.  Recent development in 2D materials beyond graphene , 2015 .

[24]  Jillian M. Buriak,et al.  Assembly of aligned linear metallic patterns on silicon , 2007, Nature Nanotechnology.

[25]  Q. Li,et al.  Polycrystalline Molybdenum Disulfide (2H−MoS2) Nano- and Microribbons by Electrochemical/Chemical Synthesis , 2004 .

[26]  Thomas F. Jaramillo,et al.  Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials , 2014 .

[27]  Bong Hoon Kim,et al.  Directed self-assembly of block copolymers for next generation nanolithography , 2013 .

[28]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[29]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[30]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[31]  J. Niemantsverdriet,et al.  Structure of Amorphous MoS3 , 1995 .

[32]  Stephen A. Morin,et al.  Assembly of nanocrystal arrays by block-copolymer-directed nucleation. , 2009, Angewandte Chemie.

[33]  X. Lou,et al.  Defect‐Rich MoS2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution , 2013, Advanced materials.

[34]  Jinan Chai,et al.  Using cylindrical domains of block copolymers to self-assemble and align metallic nanowires. , 2008, ACS nano.

[35]  Jong-Hyun Ahn,et al.  Drying‐Mediated Self‐Assembled Growth of Transition Metal Dichalcogenide Wires and their Heterostructures , 2015, Advanced materials.

[36]  C. Hawker,et al.  Block Copolymer Nanolithography: Translation of Molecular Level Control to Nanoscale Patterns , 2009, Advanced materials.

[37]  Gang Hee Han,et al.  Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations , 2015, Nature Communications.

[38]  Jakob Kibsgaard,et al.  Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. , 2012, Nature materials.

[39]  Dong Ha Kim,et al.  Synthesis and photoluminescence of titania nanoparticle arrays templated by block-copolymer thin films. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[40]  L. Thompson,et al.  XPS study of as-prepared and reduced molybdenum oxides , 1996 .

[41]  Katsuo Kurabayashi,et al.  Nanoimprint-Assisted Shear Exfoliation (NASE) for Producing Multilayer MoS2 Structures as Field-Effect Transistor Channel Arrays. , 2015, ACS nano.

[42]  Hugen Yan,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[43]  B. Weckhuysen,et al.  Envisaging the physicochemical processes during the preparation of supported catalysts: Raman microscopy on the impregnation of Mo onto Al2O3 extrudates. , 2004, Journal of the American Chemical Society.

[44]  T. Jaramillo,et al.  Core-shell MoO3-MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. , 2011, Nano letters.

[45]  K. Banerjee,et al.  MoS₂ field-effect transistor for next-generation label-free biosensors. , 2014, ACS nano.

[46]  Takhee Lee,et al.  Photoelectron spectroscopic imaging and device applications of large-area patternable single-layer MoS2 synthesized by chemical vapor deposition. , 2014, ACS nano.

[47]  Fei Meng,et al.  Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. , 2013, Journal of the American Chemical Society.

[48]  Dong Sung Choi,et al.  Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction. , 2014, Nano letters.

[49]  R. Tenne,et al.  High-Rate, Gas-Phase Growth of MoS2 Nested Inorganic Fullerenes and Nanotubes , 1995, Science.

[50]  Zhenyu Jin,et al.  High turnover frequency of hydrogen evolution reaction on amorphous MoS2 thin film directly grown by atomic layer deposition. , 2015, Langmuir : the ACS journal of surfaces and colloids.