Domain-engineered PPLN for entangled photon generation and other quantum information applications

We describe the design and application of domain-engineered, periodically poled lithium niobate (PPLN) for use to produce entangled photons and for other tools in quantum information and communications. By specially designing and controlling the PPLN poling pattern, multiple nonlinear optical processes can be simultaneously phasematched. This capability can be used to generate polarization-entangled photon pairs through type-II spontaneous parametric downconversion. The single PPLN crystal is designed to produce both the |HV〉 and |VH〉 states where the downconverted photons are distinguishable by wavelengths, which enables generation of post-selection-free, polarization-entangled twin photons. We describe the design and fabrication of the PPLN crystal, and initial experimental results for downconversion of a 775 nm pump to 1532 nm and 1567 nm orthogonally polarized photons. We also discuss other applications of engineered optical frequency conversion for quantum information including the use of dual-wavelength upconversion as a beamsplitter to route or analyze photons.

[1]  Lijun Ma,et al.  Dual-channel, single-photon upconversion detector at 1.3 μm. , 2012, Optics express.

[2]  Lijun Ma,et al.  Single photon frequency up-conversion and its applications , 2012 .

[3]  A. Zeilinger,et al.  Bell violation using entangled photons without the fair-sampling assumption , 2012, Nature.

[4]  M. Fejer,et al.  Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides. , 2005, Optics letters.

[5]  Christian Kurtsiefer,et al.  High efficiency entangled photon pair collection in type II parametric fluorescence , 2001, quant-ph/0101074.

[6]  H. Weinfurter,et al.  Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths , 2008, 0804.3799.

[7]  Toshiaki Suhara,et al.  Generation of quantum‐entangled twin photons by waveguide nonlinear‐optic devices , 2009 .

[8]  Ryan S. Bennink,et al.  Optimal collinear Gaussian beams for spontaneous parametric down-conversion , 2010, 1003.3810.

[9]  Daniel Ljunggren,et al.  Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers , 2005 .

[10]  Quasi-phase matched waveguide devices for generation of postselection-free polarization-entangled twin photons , 2009 .

[11]  Lijun Ma,et al.  Simultaneous wavelength translation and amplitude modulation of single photons from a quantum dot. , 2011, Physical review letters.

[12]  A. Bloom Quantum Electronics , 1972, Nature.

[13]  Demonstrating high symmetric single-mode single-photon heralding efficiency in spontaneous parametric downconversion , 2013, CLEO 2013.

[14]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[15]  F. Kaneda,et al.  Entangled photon generation in two-period quasi-phase-matched parametric down-conversion. , 2012, Optics express.

[16]  Akio Yoshizawa,et al.  Generation of polarisation-entangled photon pairs at 1550 nm using two PPLN waveguides , 2003 .

[17]  Masaki Asobe,et al.  Multiple quasi-phase-matched LiNbO3 wavelength converter with a continuously phase-modulated domain structure. , 2003, Optics letters.

[18]  O. Alibart,et al.  Generation of polarization-entangled photons using type-II doubly periodically poled lithium niobate waveguides , 2009 .

[19]  P. Kumar,et al.  Quantum frequency conversion. , 1990, Optics letters.

[20]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[21]  G. Corrielli,et al.  Quantum frequency conversion of quantum memory compatible photons to telecommunication wavelengths. , 2013, Optics express.

[22]  Ben-Yuan Gu,et al.  Nonlinear multiwavelength conversion based on an aperiodic optical superlattice in lithium niobate. , 2002, Optics letters.

[23]  Martin M. Fejer,et al.  Dual-channel, single-photon upconversion detector near 1300 nm , 2012, Other Conferences.

[24]  Y. Nambu,et al.  Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses , 2002 .

[25]  O. Gayer,et al.  Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3 , 2008 .

[26]  M. Fejer,et al.  Quasi-phase-matched second harmonic generation: tuning and tolerances , 1992 .

[27]  Aaron J. Miller,et al.  Detection-loophole-free test of quantum nonlocality, and applications. , 2013, Physical review letters.

[28]  Christine Silberhorn,et al.  Post-selection free, integrated optical source of non-degenerate, polarization entangled photon pairs. , 2013, Optics express.

[29]  Igal Brener,et al.  Multiple channel wavelength conversion using engineered quasi-phase matching structures in LiNbO/sub 3/ waveguides , 1999 .

[30]  Compact source of narrow-band counterpropagating polarization-entangled photon pairs using a single dual-periodically-poled crystal , 2011, 1112.4551.

[31]  Edmund Clarke,et al.  Phase-locked indistinguishable photons with synthesized waveforms from a solid-state source , 2012, Nature Communications.

[32]  O. Alibart,et al.  A photonic quantum information interface , 2005, Nature.

[33]  H. Zbinden,et al.  High efficiency coupling of photon pairs in practice. , 2013, Optics express.

[34]  H. Suzuki,et al.  Multiple quasi-phase-matched device using continuous phase modulation of /spl chi//sup (2)/ grating and its application to variable wavelength conversion , 2005, IEEE Journal of Quantum Electronics.

[35]  Z. Levine,et al.  Polarization-entangled photon pairs from a periodically poled crystalline waveguide. , 2011, Optics express.

[36]  Yanhua Shih,et al.  Entangled photons , 2003 .