H2, He, and CO2 line-broadening coefficients, pressure shifts and temperature-dependence exponents for the HITRAN database. Part 1: SO2, NH3, HF, HCl, OCS and C2H2

Abstract To increase the potential for use of the HITRAN database in astronomy, experimental and theoretical line-broadening coefficients, line shifts and temperature-dependence exponents of molecules of planetary interest broadened by H2, He, and CO2 have been assembled from available peer-reviewed sources. The collected data were used to create semi-empirical models so that every HITRAN line of the studied molecules has corresponding parameters. Since H2 and He are major constituents in the atmospheres of gas giants, and CO2 predominates in atmospheres of some rocky planets with volcanic activity, these spectroscopic data are important for remote sensing studies of planetary atmospheres. In this paper we make the first step in assembling complete sets of these parameters, thereby creating datasets for SO2, NH3, HF, HCl, OCS and C2H2.

[1]  Sunil Sarangi,et al.  Line shape parameters for HCl and HF in a CO2 atmosphere , 1972 .

[2]  F. Thibault,et al.  Experimental line broadening and line shift coefficients of the acetylene ν1 + ν3 band pressurized by hydrogen and deuterium and comparison with calculations , 2009 .

[3]  J. H. Jaffe,et al.  Pressure-Induced Shifts of HCI Lines Due to Foreign Gases , 1960 .

[4]  P. Varanasi,et al.  Intensities and line shapes in the v2-fundamentals of 14NH3 and 15NH3☆ , 1981 .

[5]  Frederick G. Smith,et al.  BROADENING OF HYDROGEN FLUORIDE LINES BY $H_{2}$, $D_{2}$ AND $N_{2}$ , 1974 .

[6]  V. Krasnopolsky Spatially-resolved high-resolution spectroscopy of Venus 1. Variations of CO2, CO, HF, and HCl at the cloud tops , 2010 .

[7]  Giovanni Buffa,et al.  Foreign-gas pressure broadening and shift of ammonia transition lines in the ν2 vibrational bands , 1990 .

[8]  Ghislain Blanquet,et al.  Diode-laser measurements of Ar- and CO2-broadened linewidths in the v1 band of OCS , 1988 .

[9]  S. Green Energy transfer in NH3-He collisions , 1980 .

[10]  Thomas M. Goyette,et al.  The pressure broadening of SO2 by N2, O2, He, and H2 between 90 and 500 K , 1996 .

[11]  Giovanni Buffa,et al.  Temperature dependence of foreign gas broadening and shift of the aQ(9,9) transition line of ammonia , 2001 .

[12]  V. Krasnopolsky Spatially-resolved high-resolution spectroscopy of Venus 2. Variations of HDO, OCS, and SO2 at the cloud tops , 2010 .

[13]  P. Varanasi,et al.  Diode laser line strength measurements of the (ν4 + ν5)0 band of 12C2H2 , 1984 .

[14]  G. Blanquet,et al.  Diode-laser measurements of H2-broadening coefficients in the ν5 band of C2H2 , 1991 .

[15]  Giada Arney,et al.  Spatially resolved measurements of H2O, HCl, CO, OCS, SO2, cloud opacity, and acid concentration in the Venus near‐infrared spectral windows , 2014 .

[16]  F. Thibault,et al.  Experimental and theoretical study of line mixing in NH3 spectra. I. Scaling analysis of parallel bands perturbed by He , 2002 .

[17]  Laurence S. Rothman,et al.  ROVIBRATIONAL LINE LISTS FOR NINE ISOTOPOLOGUES OF THE CO MOLECULE IN THE X1Σ+ GROUND ELECTRONIC STATE , 2015 .

[18]  M. Broquier,et al.  An inelastic rotational transfer study of NH, colliding with H2, and He , 1987 .

[19]  T. Encrenaz,et al.  A comparison of the atmospheres of Jupiter and Saturn: deep atmospheric composition, cloud structure, vertical mixing, and origin. , 1999, Planetary and space science.

[20]  B. Hapke,et al.  Saturn's Titan: Surface change, ammonia, and implications for atmospheric and tectonic activity , 2009 .

[21]  G. Blanquet,et al.  Line-Mixing Effects in He- and N2-Broadened Σ ← Π Infrared Q Branches of C2H2 , 2000 .

[22]  Ghislain Blanquet,et al.  CO2-broadening coefficients in the ν4 + ν5 band of acetylene , 2006 .

[23]  J. Hardwick,et al.  Line broadening and shift coefficients of acetylene at 1550 nm , 2007 .

[24]  C. Piccolo,et al.  Pressure broadening and shift of transitions of the first overtone of HCl , 2001 .

[25]  D. B. Peterson,et al.  An Empirical Expression for Line Widths of Ammonia From Far-Infrared Measurements , 1994 .

[26]  R. J. Lovell,et al.  Foreign-gas broadening of HF by CO2 , 1969 .

[27]  R. Herman Impact Theory of the Noble-Gas-Broadened HCl Vibration-Rotation Lines , 1963 .

[28]  N. Tasinato,et al.  N2-, O2- and He-collision-induced broadening of sulfur dioxide ro-vibrational lines in the 9.2 μm atmospheric window. , 2014, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[29]  M. Broquier,et al.  Pressure-Broadening and Cross-Relaxation Rates of Rotation–Inversion Transitions in the ν4Band of NH3Perturbed by CO2 , 1996 .

[30]  G. Bachet Etude des elargissements de la raie de rotation a 19 cm-1 de NH3 perturbee par des gaz etrangers comprimes , 1973 .

[31]  V. Chin,et al.  Hydrogen and nitrogen broadening of the lines of C2H2 at 14 μm , 1987 .

[32]  P. Varanasi Shapes and widths of ammonia lines collision-broadened by hydrogen. , 1972 .

[33]  J.-P. Houdeau,et al.  Etude à basse température des largeurs et des déplacements des raies rovibrationnelles de la bande fondamentale de H35Cl comprimé par N2, O2, D2 et H2 , 1980 .

[34]  J. Orphal,et al.  Line Broadening and Mixing in NH3 Inversion Doublets Perturbed by NH3, He, Ar, and H2 , 2001 .

[35]  D. Hurtmans,et al.  Narrowing broadening and shifting parameters for R(2) and P(14) lines in the HCl fundamental band perturbed by N2 and rare gases from tunable diode laser spectroscopy , 2009 .

[36]  J. Margolis Hydrogen broadened half-widths of ammonia , 1975 .

[37]  Jonathan Tennyson,et al.  A new relational database structure and online interface for the HITRAN database , 2013 .

[38]  T. A. Wiggins,et al.  Pressure induced shifts of molecular band lines , 1964 .

[39]  M. Broquier,et al.  Pressure broadening and cross relaxation of ammonia perturbed by hydrogen and helium: Implications on intermolecular potentials and discussion of rotational effects , 1988 .

[40]  T. Encrenaz,et al.  A sensitive search for organics (CH4, CH3OH, H2CO, C2H6, C2H2, C2H4), hydroperoxyl (HO2), nitrogen compounds (N2O, NH3, HCN) and chlorine species (HCl, CH3Cl) on Mars using ground-based high-resolution infrared spectroscopy , 2013 .

[41]  B. Lemoine,et al.  High Precision Pressure-Induced Lineshifts Measured with a Frequency-Stabilized Diode Laser: Application to the ν2 and (2ν2 − ν2) Bands of NH3 , 1994 .

[42]  Baer,et al.  Diode-Laser Measurements of He-, Ar-, and N2-Broadened HF Lineshapes in the First Overtone Band. , 1999, Journal of molecular spectroscopy.

[43]  S. Nouri,et al.  H2-Broadening Coefficients in the ν4 Band of NH3 , 2001 .

[44]  G. Guelachvili,et al.  Measurements of pressure-induced shifts in the 1-0 and 2-0 bands of HF and in the 2-0 bands of H35Cl and H37Cl , 1978 .

[45]  J. Buldyreva,et al.  Collisional line broadening in the atmosphere of light particles: problems and solutions in the framework of semiclassical treatment , 2005 .

[46]  T. A. Wiggins,et al.  Pressure‐Induced Shifts of HCI Lines Due to Foreign Gases , 1960 .

[47]  G. Villanueva,et al.  A search for SO2, H2S and SO above Tharsis and Syrtis volcanic districts on Mars using ground-based high-resolution submillimeter spectroscopy , 2015 .

[48]  Johannes Orphal,et al.  Line shift and mixing in the ν4 and 2ν2 band of NH3 perturbed by H2 and Ar , 2005 .

[49]  A. S. Pine,et al.  N2 and air broadening in the fundamental bands of HF and HCl , 1987 .

[50]  A. Picard-Bersellini,et al.  Linewidths and cross relaxation rates in the rotational inversion doublets of NH3 perturbed by H2 in the infrared , 1985 .

[51]  T. Guillot,et al.  A Nongray Theory of Extrasolar Giant Planets and Brown Dwarfs , 1997, astro-ph/9705201.

[52]  F. Thibault,et al.  Linewidths of C2H2 perturbed by H2: experiments and calculations from an ab initio potential. , 2008, Physical chemistry chemical physics : PCCP.

[53]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[54]  Johannes Orphal,et al.  Shifting and line mixing parameters in the ν4 band of NH3 perturbed by CO2 and He: Experimental results and theoretical calculations , 2006 .

[55]  F. Thibault,et al.  Comparison of classical, semiclassical and quantum methods in hydrogen broadening of acetylene lines , 2011 .

[56]  Calculation of the relaxation parameters of overlapping lines of the ammonia molecule pressure broadened by argon and helium , 2013 .

[57]  J. Margolis,et al.  Low temperature hydrogen broadened linewidths of ammonia in the (0,1,0,0)?(0,0,0,0) band at 200 K. , 1991, Applied optics.

[58]  H. Aroui,et al.  Analysis of N2, O2, CO2, and air broadening of infrared spectral lines in the ν4 band of NH3 , 2001 .

[59]  J. Hartmann,et al.  Line shape parameters for HF in a bath of argon as a test of classical path models , 2000 .

[60]  F. A. Liuima,et al.  Pressure Broadening of OCS in Foreign Gas Mixtures , 1954 .

[61]  F. Thibault,et al.  Experimental and theoretical study of line mixing in NH3 spectra. II. Effect of the perturber in infrared parallel bands. , 2004, The Journal of chemical physics.

[62]  Volker Ebert,et al.  Laser-based measurements of line strength, self- and pressure-broadening coefficients of the H35Cl R(3) absorption line in the first overtone region for pressures up to 1 MPa , 2010 .

[63]  C. E. Keffer,et al.  Pressure broadening of ammonia lines in the 6475åband at room and low temperatures , 1986 .

[64]  L. Brown,et al.  Line strength measurements of carbonyl sulfide (16O12C32S) in the 2v3, v1+2v2+v3, and 4v2+v3 bands , 2009 .

[65]  M. De Rosa,et al.  Self- and foreign-broadening and shift coefficients for C2H2 lines at 1.54 μm , 2001 .

[66]  D. Lis,et al.  A Line Survey of Orion-KL from 607 to 725 GHz , 2001 .

[67]  T. A. Wiggins,et al.  Breadths and shifts of molecular band lines due to perturbation by foreign gases , 1963 .

[68]  K. Ross,et al.  Low temperature pressure broadening of OCS by He. , 2005, The Journal of chemical physics.

[69]  Suresh Chandra,et al.  Molecular Interaction and Linewidth of the Asymmetric Molecule SO2. II. SO2–CO2 Collisions , 1963 .

[70]  Xiong Liu,et al.  Retrievals of sulfur dioxide from the Global Ozone Monitoring Experiment 2 (GOME‐2) using an optimal estimation approach: Algorithm and initial validation , 2011 .

[71]  L. Brown,et al.  Line positions and strengths of 41 bands including 10 OCS isotopologues in the 3850–4200 cm−1 region , 2010 .

[72]  Keeyoon Sung,et al.  Measurements of line intensities and half-widths in the 10-μm bands of 14NH3 , 2004 .

[73]  J. Stephenson,et al.  Calculation of vibrational and rotational energy transfer between HF, DF, HCl, and CO2 , 1973 .

[74]  G. Blanquet,et al.  Line-Mixing Effects in He- and N2-Broadened Q Branches of C2H2 at Low Temperatures , 2001 .

[75]  A. Dymanus,et al.  Evaluation of Molecular Quadrupole Moments from Broadening of Microwave Spectral Lines. I. Measurements , 1968 .

[76]  H. Valipour,et al.  Investigation of J dependence of line shift, line broadening, and line narrowing coefficients in the ν1+3ν3 absorption band of acetylene , 2001 .

[77]  D. Pelliccia,et al.  Diode laser spectroscopy of overtone bands of acetylene , 1996 .

[78]  W. Ip,et al.  Evidence for methane and ammonia in the coma of comet P/Halley. , 1987, Astronomy & Astrophysics.

[79]  Wm. Hayden Smith,et al.  Hydrogen broadening of vibrational-rotational transitions of ammonia lying near 6450 Å , 1985 .

[80]  W. E. Hoke,et al.  A π, τ, π/2 type pulse sequence method for the determination of T1 in rotational transitions , 1975 .

[81]  A. Coustenis,et al.  Titan trace gaseous composition from CIRS at the end of the Cassini–Huygens prime mission , 2010 .

[82]  R. Occelli,et al.  Experimental measurements of the shape and the parameters of the spectral line J = 0-1 of HF perturbed by argon and CO2 , 1980 .

[83]  P. Varanasi,et al.  Line widths of 14NH3 and 15NH3 applicable to planetary atmospheric observations , 1993 .

[84]  P. Varanasi Intensity and linewidth measurements in the 13.7 μm fundamental bands of 12C2H2 and 12C13CH2 at planetary atmospheric temperatures , 1992 .

[85]  Giovanni Buffa,et al.  N2, O2, H2, Ar and He broadening in the ν1 band of NH3 , 1993 .

[86]  W. Ip,et al.  Cassini Ion and Neutral Mass Spectrometer: Enceladus Plume Composition and Structure , 2006, Science.

[87]  B. Dutta,et al.  Semi-classical analysis of helium broadened acetylene (ν1+3ν3) band transitions measured by a NIR diode laser spectrometer , 2001 .

[88]  A. A. Taylor,et al.  Temperature dependence of pressure broadening and shifts of acetylene at 1550 nm by He, Ne, and Ar , 2008 .

[89]  C. Boulet,et al.  Lineshapes and broadening coefficients in the v5 band of C2H2 in collision with Kr and He , 1991 .

[90]  P. A. Bonczyk Determination of the linewidth dependence on foreign-gas pressure for 3.4- $mu$m DF spectra , 1976 .

[91]  B. Lemoine,et al.  Line frequency shifting in the ν5 band of C2H2 , 1998 .

[92]  Franck Thibault,et al.  Theoretical He-broadening coefficients of infrared and raman C2H2 lines and their temperature dependence , 2005 .

[93]  O. Buzykin,et al.  Comparative analysis of purely classical and semiclassical approaches to collision line broadening of polyatomic molecules: II. C2H2-He case , 2005 .

[94]  J. Bouanich,et al.  Collisional Broadening Coefficients in the ν4 Band of NH3 Perturbed by He and Ar , 2000 .

[95]  T. Oka,et al.  Pressure Broadening Measurement of the ν 2 [qR − (0,0)] Transition of 15NH3 by a CO2 Laser , 1971 .

[96]  O. Buzykin,et al.  On the accuracy of classical, semiclassical and quantum methods in collision line broadening calculations: Comparative analysis for C2H2–Ar, He systems , 2010 .

[97]  William Benesch,et al.  Molecular Collision Cross Sections from Infrared Absorption Measurements , 1960 .

[98]  A. Vandaele,et al.  CO2 pressure broadening and shift coefficients for the 1–0 band of HCl and DCl , 2012 .

[99]  P. Rimmer,et al.  Small hydrocarbon molecules in cloud-forming brown dwarf and giant gas planet atmospheres , 2013, 1307.2565.

[100]  V. N. Stroinova,et al.  Noble Gas Pressure-Induced Broadening and Shift of H2O and SO2 Absorption Lines , 1995 .

[101]  F. Meyer,et al.  Absorption measurements using CW MIR NH3 laser , 1986 .

[102]  C. Puzzarini,et al.  N2-, O2-, H2-, and He-broadening of SO2 rotational lines in the mm-/submm-wave and THz frequency regions: The J and Ka dependence☆ , 2012 .

[103]  S. Nozette,et al.  Venus: Chemical Weathering of Igneous Rocks and Buffering of Atmospheric Composition , 1982, Science.

[104]  Prasad Varanasi,et al.  Infrared line widths at planetary atmospheric temperatures , 1988 .

[105]  Laurence S. Rothman,et al.  Observations of D/H ratios in H2O, HCl, and HF on Venus and new DCl and DF line strengths☆ , 2013 .

[106]  M. Broquier,et al.  Rotational inelastic cross sections for OCS-Ar, OCS-He, OCS-H2 collisions - A comparison between theory and experiment. [applicable to interstellar processes] , 1986 .

[107]  James E. Boggs,et al.  Collision Broadening of Rotational Absorption Lines. III. Broadening by Linear Molecules and Inert Gases and the Determination of Molecular Quadrupole Moments , 1968 .

[108]  Robert H. Hunt,et al.  Linewidths of HCl Broadened by H2, D2, and HCN , 1970 .

[109]  A. Ben-Reuven,et al.  Theory and Measurement of Pressure‐Induced Shifts of HCl Lines Due to Noble Gases , 1961 .

[110]  Robert L. Legan,et al.  Linewidths of the Microwave Inversion Spectrum of Ammonia , 1965 .

[111]  T. Heijmen,et al.  Rotational state-to-state rate constants and pressure broadening coefficients for He–C2H2 collisions: Theory and experiment , 1999 .

[112]  Alfred J Prata,et al.  Retrieval of volcanic SO2 column abundance from Atmospheric Infrared Sounder data , 2007 .

[113]  G. D. Billing,et al.  Fourier transform linewidths measurements in NH3 in the vibrational ground state , 1988 .

[114]  P. Varanasi,et al.  Intensity and half-width measurements in the 1·525 μm band of acetylene☆ , 1975 .

[115]  B. Sumpf,et al.  Noble gas pressure broadening in the v1 and v3 band of SO2 studied with IR tunable diode laser spectroscopy , 1995 .

[116]  P. Friberg,et al.  Observations of OCS and a search for OC3S in the interstellar medium. , 1987, The Astrophysical journal.

[117]  G. Blanquet,et al.  Hydrogen-broadening coefficients in the ν5 band of acetylene at low temperature , 2002 .