Fractal measures and mean p-variations

[1]  G. H. Hardy,et al.  Some properties of fractional integrals. I. , 1928 .

[2]  N. Wiener Generalized harmonic analysis , 1930 .

[3]  On Convergent Poisson Convolutions , 1935 .

[4]  P. Erdös On the Smoothness Properties of a Family of Bernoulli Convolutions , 1940 .

[5]  W. A. Beyer Hausdorff dimension of level sets of some Rademacher series. , 1962 .

[6]  A. Garsia Arithmetic properties of Bernoulli convolutions , 1962 .

[7]  Shmuel Agmon,et al.  Asymptotic properties of solutions of differential equations with simple characteristics , 1976 .

[8]  K. Lau,et al.  On generalized harmonic analysis , 1980 .

[9]  Extension of Wiener’s Tauberian identity and multipliers on the Marcinkiewicz space , 1983 .

[10]  K. Falconer The geometry of fractal sets , 1985 .

[11]  R. Strichartz Besicovitch meets Wiener—Fourier expansions and fractal measures , 1989 .

[12]  J. Benedetto,et al.  An n-dimensional Wiener-Plancherel formula , 1989 .

[13]  K. Lau,et al.  Some new classes of Hardy spaces , 1989 .

[14]  M. Urbanski,et al.  On the Hausdorff dimension of some fractal sets , 1989 .

[15]  K. Lau,et al.  Wiener transformation on functions with bounded averages , 1990 .

[16]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[17]  R. Strichartz fourier asymptotics of fractal measures , 1990 .

[18]  Christopher Heil,et al.  WIENER AMALGAM SPACES IN GENERALIZED HARMONIC ANALYSIS AND WAVELET THEORY , 1990 .

[19]  The sum of Rademacher functions and Hausdorff dimension , 1990 .

[20]  The spherical Wiener-Plancherel formula and spectral estimation , 1991 .

[21]  R. Strichartz Spectral asymptotics of fractal measures on Riemannian manifolds , 1991 .

[22]  R. Strichartz Self-similar measures and their Fourier transforms. II , 1993 .

[23]  K. Lau,et al.  Mean quadratic variations and Fourier asymptotics of self-similar measures , 1993 .