Strain and Conduction-Band Offset in Narrow n-type FinFETs

In this paper, we compare measurements of the conduction-band (CB) offset in [110]- and [010]-oriented narrow n-type FinFETs with a model taking into account both strain and quantum confinement. We estimate the complete strain tensor for the scarce strain measurement points available with finite-element-method simulations of the thermal expansion effect. We found an inhomogeneous compressive strain that increases for smaller fin widths. The experimental CB offset is extracted from temperature-dependent transfer characteristics. The results show a lowering of the CB edge up to 40 meV for fin widths down to 5 nm. These experimental observations compare well with the model, and hence, the band offset can be explained by both quantum confinement and strain.

[1]  G. Iafrate,et al.  Quantum correction to the equation of state of an electron gas in a semiconductor. , 1989, Physical review. B, Condensed matter.

[2]  A. Perry A contribution to the study of poisson's ratios and elasticconstants of TiN, ZrN and HfN , 1990 .

[3]  D. Esseni,et al.  Mobility Enhancement in Strained $n$ -FinFETs: Basic Insight and Stress Engineering , 2010, IEEE Transactions on Electron Devices.

[4]  S. Laux,et al.  Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys , 1996 .

[5]  M. Ancona,et al.  Macroscopic physics of the silicon inversion layer. , 1987, Physical review. B, Condensed matter.

[6]  G. E. Pikus,et al.  Symmetry and strain-induced effects in semiconductors , 1974 .

[7]  Ben D. Fulcher,et al.  Hardness analysis of cubic metal mononitrides from first principles , 2012 .

[8]  Denis Flandre,et al.  $g_{m}/I_{\rm d}$ Method for Threshold Voltage Extraction Applicable in Advanced MOSFETs With Nonlinear Behavior Above Threshold , 2010, IEEE Electron Device Letters.

[9]  C.R. Cleavelin,et al.  Body effect in tri- and pi-gate SOI MOSFETs , 2004, IEEE Electron Device Letters.

[10]  Weileun Fang,et al.  Determining the Poisson’s ratio of thin film materials using resonant method , 2003 .

[11]  Moon J. Kim,et al.  Effects of Film Stress Modulation Using TiN Metal Gate on Stress Engineering and Its Impact on Device Characteristics in Metal Gate/High- $k$ Dielectric SOI FinFETs , 2008, IEEE Electron Device Letters.

[12]  J. Welser,et al.  Strain dependence of the performance enhancement in strained-Si n-MOSFETs , 1994, Proceedings of 1994 IEEE International Electron Devices Meeting.

[13]  L. Selmi,et al.  Investigation of Strain Engineering in FinFETs Comprising Experimental Analysis and Numerical Simulations , 2011, IEEE Transactions on Electron Devices.

[14]  S. Selberherr,et al.  The Effect of General Strain on the Band Structure and Electron Mobility of Silicon , 2007, IEEE Transactions on Electron Devices.

[16]  H. Nayfeh,et al.  Strained silicon MOSFET technology , 2002, Digest. International Electron Devices Meeting,.

[17]  R. Elliman,et al.  Nanomechanical properties of sputter-deposited HfO2 and HfxSi1-xO2 thin films , 2011 .

[19]  A. M. Howatson,et al.  Engineering Tables and Data , 1972 .

[20]  A. Hikavyy,et al.  Highly manufacturable FinFETs with sub-10nm fin width and high aspect ratio fabricated with immersion lithography , 2007, 2007 IEEE Symposium on VLSI Technology.

[21]  D. Esseni,et al.  Extracting the conduction band offset in strained FinFETs from subthreshold-current measurements , 2011, 2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC).

[22]  Zheng-tang Liu,et al.  First-Principles Investigations on Structural, Elastic, Electronic, and Optical Properties of Tetragonal HfSiO4 , 2012, Brazilian Journal of Physics.

[23]  S. Thompson,et al.  Uniaxial-process-induced strained-Si: extending the CMOS roadmap , 2006, IEEE Transactions on Electron Devices.

[24]  Shihong Zhou,et al.  The relationship between the thermal expansions and structures of ABO4 oxides , 2007 .

[25]  L. A. Davis Fracture toughnesses of metallic glasses , 1979 .

[26]  T. Skotnicki,et al.  Innovative Materials, Devices, and CMOS Technologies for Low-Power Mobile Multimedia , 2008, IEEE Transactions on Electron Devices.

[27]  Hyman Joseph Levinstein,et al.  Thermal stresses and cracking resistance of dielectric films (SiN, Si3N4, and SiO2) on Si substrates , 1978 .

[28]  Y. Taur An analytical solution to a double-gate MOSFET with undoped body , 2000 .

[29]  K. F. Lee,et al.  Scaling the Si MOSFET: from bulk to SOI to bulk , 1992 .

[30]  W. Sharpe,et al.  Techniques for measuring thermal expansion and creep of polysilicon , 2004 .

[31]  S. Sugahara,et al.  Carrier-Transport-Enhanced Channel CMOS for Improved Power Consumption and Performance , 2008, IEEE Transactions on Electron Devices.

[32]  Extracting Energy Band Offsets on Long-Channel Thin Silicon-on-Insulator MOSFETs , 2009, IEEE Transactions on Electron Devices.

[33]  R.M.D.A. Velghe,et al.  Contribution to the characterization of the hump effect in MOSFET submicronic technologies , 1999, ICMTS 1999. Proceedings of 1999 International Conference on Microelectronic Test Structures (Cat. No.99CH36307).

[34]  L. Selmi,et al.  Nanoscale MOS Transistors , 2010 .

[35]  R. L. Edwards,et al.  Measurements of Young's modulus, Poisson's ratio, and tensile strength of polysilicon , 1997, Proceedings IEEE The Tenth Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots.