Conversion of hydrocarbons and alcohols for fuel cells

The growing demand for clean and efficient energy systems is the driving force in the development of fuel processing technology for providing hydrogen or hydrogen-containing gaseous fuels for power generation in fuel cells. Successful development of low cost, efficient fuel processing systems will be critical to the commercialisation of this technology. This article reviews various reforming technologies available for the generation of such fuels from hydrocarbons and alcohols. It also briefly addresses the issue of carbon monoxide clean-up and the question of selecting the appropriate fuel(s) for small/medium scale fuel processors for stationary and automotive applications.

[1]  N. Iwasa,et al.  Steam reforming of methanol over Pd/ZnO: Effect of the formation of PdZn alloys upon the reaction , 1995 .

[2]  V. Choudhary,et al.  Selective Oxidation of Methane to CO and H2 over Ni/MgO at Low Temperatures , 1992 .

[3]  R. Sinkevitch,et al.  Carbon Monoxide Removal from Hydrogen-Rich Fuel Cell Feedstreams by Selective Catalytic Oxidation , 1993 .

[4]  Miguel Laborde,et al.  Hydrogen from steam reforming of ethanol. characterization and performance of copper-nickel supported catalysts , 1998 .

[5]  P. Nielsen,et al.  Steam reforming of methane in a membrane reactor , 1995 .

[6]  B. Höhlein,et al.  Fuel cell drive system with hydrogen generation in test , 2000 .

[7]  N. Iwasa,et al.  Reforming of ethanol-dehydrogenation to ethyl acetate and steam reforming to acetic acid over copper-based catalysts , 1991 .

[8]  Bernd Emonts,et al.  Methanol steam reforming in a fuel cell drive system , 1999 .

[9]  H. G. Düsterwald,et al.  Methanol steam‐reforming in a catalytic fixed bed reactor , 1997 .

[10]  T. Nakajima,et al.  Catalytic properties of supported cobalt catalysts for steam reforming of ethanol , 1997 .

[11]  Brant A. Peppley,et al.  Methanol–steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model , 1999 .

[12]  Jesse S. Wainright,et al.  A H2O2 fuel cell using acid doped polybenzimidazole as polymer electrolyte , 1996 .

[13]  Jens R. Rostrup-Nielsen Conversion of hydrocarbons and alcohols for fuel cells , 2001 .

[14]  William L. Mitchell,et al.  Development of a Catalytic Partial Oxidation Ethanol Reformer for Fuel Cell Applications , 1995 .

[15]  Jens R. Rostrup-Nielsen,et al.  Steam Reforming Opportunities and Limits of the Technology , 1992 .

[16]  J. Rostrup-Nielsen,et al.  Internal steam reforming in fuel cells and alkali poisoning , 1995 .

[17]  Jens R. Rostrup-Nielsen,et al.  Steam reforming of liquid hydrocarbons , 1998 .

[18]  S. Golunski HotSpotl'l Fuel Processor ADVANCING THE CASE FOR FUEL CELL POWERED CARS , 1998 .

[19]  Daniel A. Hickman,et al.  Synthesis gas formation by direct oxidation of methane over Pt monoliths , 1992 .

[20]  R. Hughes,et al.  Fabrication of dense palladium composite membranes for hydrogen separation , 2000 .

[21]  L. Schmidt,et al.  Synthesis gas formation by catalytic oxidation of methane in fluidized bed reactors , 1994 .

[22]  L. Schmidt,et al.  Effect of pressure on three catalytic partial oxidation reactions at millisecond contact times , 1995 .

[23]  F. Basile,et al.  Ni/Mg/Al anionic clay derived catalysts for the catalytic partial oxidation of methane : Residence time dependence of the reactivity features , 1998 .

[24]  M. Haruta,et al.  Selective oxidation of CO in hydrogen over gold supported on manganese oxides , 1997 .

[25]  B. Pivovar,et al.  Pervaporation membranes in direct methanol fuel cells , 1999 .

[26]  L. Schmidt,et al.  The Effect of Ceramic Supports on Partial Oxidation of Hydrocarbons over Noble Metal Coated Monoliths , 1998 .

[27]  Ivar Ivarsen Primdahl,et al.  Developments in Autothermal Reforming , 1998 .

[28]  S. Fujita,et al.  Difference in the selectivity of CO and CO2 methanation reactions , 1997 .

[29]  L. Schmidt Millisecond chemical reactions and reactors , 2000 .

[30]  Daniel A. Hickman,et al.  Synthesis gas formation by direct oxidation of methane over Rh monoliths , 1993 .

[31]  T. Nakajima,et al.  Effect of crystallite size on the catalysis of alumina-supported cobalt catalyst for steam reforming of ethanol , 1998 .

[32]  A. I. Kozlov,et al.  A new approach to active supported Au catalysts , 1999 .

[33]  K. Aasberg-Petersen,et al.  Molecular aspects in short residence time catalytic partial oxidation reactions , 1998 .

[34]  T. Kojima,et al.  Hydrogen permeation properties through composite membranes of platinum supported on porous alumina , 2000 .

[35]  L. Schmidt,et al.  Comparison of monolith-supported metals for the direct oxidation of methane to syngas , 1994 .

[36]  H. Gasteiger,et al.  Kinetics of the Selective Low-Temperature Oxidation of CO in H2-Rich Gas over Au/α-Fe2O3 , 1999 .

[37]  A. Ravella,et al.  Chemical reactor technology for environmentally safe reactors and products , 1992 .

[38]  B. Höhlein,et al.  Hydrogen from methanol for fuel cells in mobile systems: development of a compact reformer , 1996 .

[39]  Stanislaw E. Golunski,et al.  On-board hydrogen generation for transport applications: the HotSpot™ methanol processor , 1998 .

[40]  Andreas Docter,et al.  Gasoline fuel cell systems , 1999 .

[41]  Paul M. Witt,et al.  Effect of Flow Rate on the Partial Oxidation of Methane and Ethane , 1996 .

[42]  Mark S. Wainwright,et al.  KINETIC MECHANISM FOR THE REACTION BETWEEN METHANOL AND WATER OVER A CU-ZNO-AL2O3 CATALYST , 1993 .

[43]  S. Wasmus,et al.  Methanol oxidation and direct methanol fuel cells: a selective review 1 In honour of Professor W. Vi , 1999 .

[44]  Raymond J. Gorte,et al.  Direct oxidation of hydrocarbons in a solid-oxide fuel cell , 2000, Nature.

[45]  Toshihiro Tanaka,et al.  Use of Thermodynamic Data to Determine Surface Tension and Viscosity of Metallic Alloys , 1999 .

[46]  S. Freni,et al.  Ethanol steam reforming in a molten carbonate fuel cell. A preliminary kinetic investigation , 1996 .

[47]  Peter C. Eklund,et al.  Hydrogen Adsorption in Carbon Materials , 1999 .

[48]  K. Aasberg-Petersen,et al.  Catalytic partial oxidation of natural gas at elevated pressure and low residence time , 2001 .