Bendable and thin sulfide solid electrolyte film: a new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries.

Bulk-type all-solid-state lithium batteries (ASLBs) are considered a promising candidate to outperform the conventional lithium-ion batteries. Unfortunately, the current technology level of ASLBs is in a stage of infancy in terms of cell-based (not electrode-material-based) energy densities and scalable fabrication. Here, we report on the first ever bendable and thin sulfide solid electrolyte films reinforced with a mechanically compliant poly(paraphenylene terephthalamide) nonwoven (NW) scaffold, which enables the fabrication of free-standing and stackable ASLBs with high energy density and high rate capabilities. The ASLB, using a thin (∼70 μm) NW-reinforced SE film, exhibits a 3-fold increase of the cell-energy-density compared to that of a conventional cell without the NW scaffold.

[1]  Ji-Won Choi,et al.  Issue and challenges facing rechargeable thin film lithium batteries , 2008 .

[2]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[3]  B. R. Shin,et al.  All-Solid-State Rechargeable Lithium Batteries Using LiTi2(PS4)3 Cathode with Li2S-P2S5 Solid Electrolyte , 2014 .

[4]  Ryoji Kanno,et al.  Lithium Ionic Conductor Thio-LISICON: The Li2 S ­ GeS2 ­ P 2 S 5 System , 2001 .

[5]  Steven R. Hall,et al.  Harnessing the Actuation Potential of Solid‐State Intercalation Compounds , 2006 .

[6]  Masahiro Tatsumisago,et al.  Electrochemical Performance of All-Solid-State Li/S Batteries with Sulfur-Based Composite Electrodes Prepared by Mechanical Milling at High Temperature , 2013 .

[7]  Hiroshi Nagata,et al.  A lithium sulfur battery with high power density , 2014 .

[8]  A. Hayashi,et al.  High-capacity Li2S–nanocarbon composite electrode for all-solid-state rechargeable lithium batteries , 2012 .

[9]  M. Osada,et al.  Enhancement of the High‐Rate Capability of Solid‐State Lithium Batteries by Nanoscale Interfacial Modification , 2006 .

[10]  Sang‐young Lee,et al.  SiO2 nanoparticles-coated poly(paraphenylene terephthalamide) nonwovens as reinforcing porous substrates for proton-conducting, sulfonated poly(arylene ether sulfone)-impregnated composite membranes , 2011 .

[11]  B. R. Shin,et al.  Comparative Study of TiS2/Li-In All-Solid-State Lithium Batteries Using Glass-Ceramic Li3PS4 and Li10GeP2S12 Solid Electrolytes , 2014 .

[12]  A. Hayashi,et al.  Sulfide Solid Electrolyte with Favorable Mechanical Property for All-Solid-State Lithium Battery , 2013, Scientific Reports.

[13]  A. Hayashi,et al.  Interfacial Observation between LiCoO2 Electrode and Li2S−P2S5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy† , 2010 .

[14]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[15]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[16]  Jürgen Köhler,et al.  Single-crystal X-ray Structure Analysis of the Superionic Conductor Li 10 Gep 2 S 12 † Pccp Communication , 2022 .

[17]  Thomas A. Yersak,et al.  In situ lithiation of TiS2 enabled by spontaneous decomposition of Li3N , 2011 .

[18]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[19]  Young Jin Nam,et al.  Issues and Challenges for Bulk‐Type All‐Solid‐State Rechargeable Lithium Batteries using Sulfide Solid Electrolytes , 2015 .

[20]  Yong Yang,et al.  Origin of deterioration for LiNiO2 cathode material during storage in air , 2004 .

[21]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[22]  Thomas A. Yersak,et al.  Solid State Enabled Reversible Four Electron Storage , 2013 .

[23]  A. Yamada,et al.  All solid-state sheet battery using lithium inorganic solid electrolyte, thio-LISICON , 2009 .

[24]  J. Dahn,et al.  Studies of LiCoO2 Coated with Metal Oxides , 2003 .

[25]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[26]  Keon Jae Lee,et al.  Bendable inorganic thin-film battery for fully flexible electronic systems. , 2012, Nano letters.

[27]  Venkataraman Thangadurai,et al.  Lithium Lanthanum Titanates: A Review , 2003 .

[28]  J. Tarascon,et al.  In situ measurements of Li ion battery electrode material conductivity : Application to LixCoO2 and conversion reactions , 2007 .

[29]  Sehee Lee,et al.  Nanoscale Interface Modification of LiCoO2 by Al2O3 Atomic Layer Deposition for Solid-State Li Batteries , 2012 .

[30]  Brian C. Sales,et al.  Characterization of Thin‐Film Rechargeable Lithium Batteries with Lithium Cobalt Oxide Cathodes , 1996 .

[31]  K. Tadanaga,et al.  Preparation of Li 2 S–P 2 S 5 solid electrolyte from N -methylformamide solution and application for all-solid-state lithium battery , 2014 .

[32]  T. Yoshida,et al.  Compatibility of Li7La3Zr2O12 Solid Electrolyte to All-Solid-State Battery Using Li Metal Anode , 2010 .

[33]  Sang-Young Lee,et al.  Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries , 2013 .

[34]  K. Tadanaga,et al.  Electrochemical Analysis of Li4Ti5O12 Electrode in All-Solid-State Lithium Secondary Batteries , 2009 .

[35]  C. Fisher,et al.  Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery , 2011 .

[36]  Klaus Zick,et al.  Li10SnP2S12: an affordable lithium superionic conductor. , 2013, Journal of the American Chemical Society.

[37]  Jin Wook Kim,et al.  Interfacial Architecture for Extra Li+ Storage in All-Solid-State Lithium Batteries , 2014, Scientific Reports.

[38]  A. Hayashi,et al.  Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere , 2011 .

[39]  K. Tadanaga,et al.  New, Highly Ion‐Conductive Crystals Precipitated from Li2S–P2S5 Glasses , 2005 .

[40]  S. Ohta,et al.  Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery , 2014 .

[41]  A. Hayashi,et al.  LiCoO2 Electrode Particles Coated with Li2S – P2S5 Solid Electrolyte for All-Solid-State Batteries , 2010 .

[42]  S. Kondo,et al.  Solid-state lithium battery with graphite anode , 2003 .

[43]  C. Liang,et al.  Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries. , 2013, ACS nano.

[44]  Kazunori Takada,et al.  A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries , 2014 .

[45]  Zhan Lin,et al.  Lithium polysulfidophosphates: a family of lithium-conducting sulfur-rich compounds for lithium-sulfur batteries. , 2013, Angewandte Chemie.

[46]  Steven M. George,et al.  Improved Functionality of Lithium‐Ion Batteries Enabled by Atomic Layer Deposition on the Porous Microstructure of Polymer Separators and Coating Electrodes , 2012 .

[47]  D. Aurbach,et al.  Impedance Spectroscopy of Li Electrodes. 4. A General Simple Model of the Li−Solution Interphase in Polar Aprotic Systems , 1996 .

[48]  Seokgwang Doo,et al.  A rocking chair type all-solid-state lithium ion battery adopting Li2O–ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte , 2014 .

[49]  J. Dahn,et al.  Improving the Capacity Retention of LiCoO2 Cycled to 4.5 V by Heat-Treatment , 2004 .

[50]  G. Janssen,et al.  Performance analysis of sulfonated PPTA polymers as potential fuel cell membranes , 2006 .

[51]  R. Mercier,et al.  Structure du tetrathiophosphate de lithium , 1982 .

[52]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .