Remote Sensing Image Classification Using Fuzzy-PSO Hybrid Approach

Pixel classification among overlapping land cover regions in remote sensing imagery is a challenging task. Detection of uncertainty and vagueness are always key features for classifying mixed pixels. This chapter proposes an approach for pixel classification using hybrid approach of Fuzzy C-Means and Particle Swarm Optimization methods. This new unsupervised algorithm is able to identify clusters utilizing particle swarm optimization based on fuzzy membership values. This approach addresses overlapping regions in remote sensing images by uncertainties using fuzzy set membership values. PSO is a population-based stochastic optimization technique inspired from the social behavior of bird flocks. The authors demonstrate the algorithm for segmenting a LANDSAT image of Shanghai. The newly developed algorithm is compared with FCM and K-Means algorithms. The new algorithm-generated clustered regions are verified with the available ground truth knowledge. The validity and statistical analysis are performed to demonstrate the superior performance of the new algorithm with K-Means and FCM algorithms. (Less)

[1]  Martin Brown,et al.  Support vector machines for optimal classification and spectral unmixing , 1999 .

[2]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[3]  Shyi-Ming Chen,et al.  A comparison of similarity measures of fuzzy values , 1995 .

[4]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Isak Gath,et al.  Detection and Separation of Ring-Shaped Clusters Using Fuzzy Clustering , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Isabelle Bloch,et al.  On fuzzy distances and their use in image processing under imprecision , 1999, Pattern Recognit..

[7]  Ricardo Vilalta,et al.  Introduction to the Special Issue on Meta-Learning , 2004, Machine Learning.

[8]  Luis Gómez-Chova,et al.  Semisupervised Image Classification With Laplacian Support Vector Machines , 2008, IEEE Geoscience and Remote Sensing Letters.

[9]  Robert Clarke,et al.  Motif-guided sparse decomposition of gene expression data for regulatory module identification , 2011, BMC Bioinformatics.

[10]  Jonathan M. Garibaldi,et al.  ArrayMining: a modular web-application for microarray analysis combining ensemble and consensus methods with cross-study normalization , 2009, BMC Bioinformatics.

[11]  Ankush Mittal,et al.  Application of SVM on satellite images to detect hotspots in Jharia coal field region of India , 2008 .

[12]  Chu Kiong Loo,et al.  Solving Unit Commitment Problem Using Hybrid Particle Swarm Optimization , 2003, J. Heuristics.

[13]  Sheng-De Wang,et al.  Fuzzy support vector machines , 2002, IEEE Trans. Neural Networks.

[14]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[15]  Athanasios V. Vasilakos,et al.  Comparison of computational intelligence based classification techniques for remotely sensed optical image classification , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Begüm Demir,et al.  Hyperspectral Image Classification Using Relevance Vector Machines , 2007, IEEE Geoscience and Remote Sensing Letters.

[17]  Gustavo Camps-Valls,et al.  Retrieval of oceanic chlorophyll concentration with relevance vector machines , 2006 .

[18]  Sanghamitra Bandyopadhyay,et al.  Pixel classification using variable string genetic algorithms with chromosome differentiation , 2001, IEEE Trans. Geosci. Remote. Sens..

[19]  S. Chatterjee,et al.  Similarity measures for image databases , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[20]  Alexander Schliep,et al.  Clustering cancer gene expression data: a comparative study , 2008, BMC Bioinformatics.

[21]  Sanghamitra Bandyopadhyay,et al.  Satellite image classification using genetically guided fuzzy clustering with spatial information , 2005 .

[22]  Jon Atli Benediktsson,et al.  Kernel Principal Component Analysis for the Classification of Hyperspectral Remote Sensing Data over Urban Areas , 2009, EURASIP J. Adv. Signal Process..

[23]  Rainer Spang,et al.  Diagnostic signatures from microarrays: a bioinformatics concept for personalized medicine. , 2003, Drug discovery today.

[24]  L. V. van't Veer,et al.  Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[25]  V. Sugumaran The Inaugural Issue of the International Journal of Intelligent Information Technologies , 2005 .

[26]  Bor-Chen Kuo,et al.  A New Adaptive Fuzzy Clustering Algorithm for Remotely Sensed Images , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[27]  Peter B Barker,et al.  Benign and malignant breast lesions: diagnosis with multiparametric MR imaging. , 2003, Radiology.

[28]  Giles M. Foody,et al.  The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM , 2006 .

[29]  Lorenzo Bruzzone,et al.  Robust multiple estimator systems for the analysis of biophysical parameters from remotely sensed data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Satoru Miyano,et al.  Open source clustering software , 2004 .

[31]  Luis Samaniego,et al.  Fuzzy rule-based classification of remotely sensed imagery , 2002, IEEE Trans. Geosci. Remote. Sens..

[32]  Jung-Hsien Chiang,et al.  Support vector learning mechanism for fuzzy rule-based modeling: a new approach , 2004, IEEE Trans. Fuzzy Syst..

[33]  Subha Madhavan,et al.  PUGSVM: a caBIGTM analytical tool for multiclass gene selection and predictive classification , 2011, Bioinform..

[34]  S. K. Basu,et al.  Robust classification of multispectral data using multiple neural networks and fuzzy integral , 1997, IEEE Trans. Geosci. Remote. Sens..

[35]  Lorenzo Bruzzone,et al.  The role of spectral resolution and classifier complexity in the analysis of hyperspectral images of forest areas. , 2007 .

[36]  Isak Gath,et al.  Unsupervised Optimal Fuzzy Clustering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Hugo Carrão,et al.  Contribution of multispectral and multitemporal information from MODIS images to land cover classification , 2008 .

[38]  Barak A. Pearlmutter,et al.  Detecting intrusions using system calls: alternative data models , 1999, Proceedings of the 1999 IEEE Symposium on Security and Privacy (Cat. No.99CB36344).

[39]  Hidefumi Imura,et al.  An automatic method for burn scar mapping using support vector machines , 2009 .

[40]  Gabriele Moser,et al.  Partially Supervised classification of remote sensing images through SVM-based probability density estimation , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[41]  Rick Archibald,et al.  Feature Selection and Classification of Hyperspectral Images With Support Vector Machines , 2007, IEEE Geoscience and Remote Sensing Letters.

[42]  Martin J. Wooster,et al.  Texture based feature extraction: Application to burn scar detection in Earth observation satellite sensor imagery , 2002 .

[43]  Giles M. Foody,et al.  Land cover classification using multi‐temporal MERIS vegetation indices , 2007 .

[44]  C. D. Mouza,et al.  FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 1 Filtering Structures for Microblogging Content , 2015 .

[45]  Fangju Wang,et al.  Fuzzy supervised classification of remote sensing images , 1990 .

[46]  Rajesh N. Dave,et al.  Use Of The Adaptive Fuzzy Clustering Algorithm To Detect Lines In Digital Images , 1990, Other Conferences.

[47]  Gustavo Camps-Valls,et al.  Semisupervised Remote Sensing Image Classification With Cluster Kernels , 2009, IEEE Geoscience and Remote Sensing Letters.

[48]  A. Brenning Benchmarking classifiers to optimally integrate terrain analysis and multispectral remote sensing in automatic rock glacier detection , 2009 .

[49]  Rainer Fuchs,et al.  Analysis of temporal gene expression profiles: clustering by simulated annealing and determining the optimal number of clusters , 2001, Bioinform..

[50]  José Luis Rojo-Álvarez,et al.  Kernel-Based Framework for Multitemporal and Multisource Remote Sensing Data Classification and Change Detection , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[51]  Wen-June Wang,et al.  New similarity measures on fuzzy sets and on elements , 1997, Fuzzy Sets Syst..

[52]  Gustavo Camps-Valls,et al.  Composite kernels for hyperspectral image classification , 2006, IEEE Geoscience and Remote Sensing Letters.

[53]  Ujjwal Maulik,et al.  Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification , 2003, IEEE Trans. Geosci. Remote. Sens..

[54]  Chien-Hsing Chou,et al.  Short Papers , 2001 .

[55]  William Stafford Noble,et al.  Kernel hierarchical gene clustering from microarray expression data , 2003, Bioinform..

[56]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[57]  Lorenzo Bruzzone,et al.  A Composite Semisupervised SVM for Classification of Hyperspectral Images , 2009, IEEE Geoscience and Remote Sensing Letters.

[58]  Farid Melgani,et al.  Toward an Optimal SVM Classification System for Hyperspectral Remote Sensing Images , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[59]  Lorenzo Bruzzone,et al.  Fusion of Hyperspectral and LIDAR Remote Sensing Data for Classification of Complex Forest Areas , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[60]  Larry Biehl,et al.  The Effect of Postemergence Herbicides on The Spectral Reflectance of Corn , 2008, Weed Technology.

[61]  Guoliang Fan,et al.  A ν-insensitive SVM approach for compliance monitoring of the conservation reserve program , 2005, IEEE Geosci. Remote. Sens. Lett..

[62]  Chi Hau Chen,et al.  Statistical pattern recognition in remote sensing , 2008, Pattern Recognit..

[63]  Cheng Wang,et al.  Using Stacked Generalization to Combine SVMs in Magnitude and Shape Feature Spaces for Classification of Hyperspectral Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[64]  Johannes R. Sveinsson,et al.  Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles , 2008, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[65]  S. Verzakov,et al.  Estimating grassland biomass using SVM band shaving of hyperspectral data , 2007 .

[66]  C. Pappis,et al.  A comparative assessment of measures of similarity of fuzzy values , 1993 .

[67]  Farid Melgani,et al.  Semisupervised PSO-SVM Regression for Biophysical Parameter Estimation , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[68]  Andrew P. Bradley,et al.  Rule extraction from support vector machines: A review , 2010, Neurocomputing.

[69]  Ujjwal Maulik,et al.  Efficient parallel algorithm for pixel classification in remote sensing imagery , 2012, GeoInformatica.

[70]  Yan Li,et al.  Remote sensing image classification development in the past decade , 2009, International Symposium on Multispectral Image Processing and Pattern Recognition.

[71]  Ying Xu,et al.  Clustering gene expression data using a graph-theoretic approach: an application of minimum spanning trees , 2002, Bioinform..

[72]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[73]  Pierpaolo D'Urso,et al.  Fuzzy unsupervised classification of multivariate time trajectories with the Shannon entropy regularization , 2006, Comput. Stat. Data Anal..

[74]  Ujjwal Maulik,et al.  Parallel Point Symmetry Based Clustering for Gene Microarray Data , 2009, 2009 Seventh International Conference on Advances in Pattern Recognition.

[75]  Ronald R. Yager,et al.  Entropy measures under similarity relations , 1992 .

[76]  T. Esch,et al.  Large-area assessment of impervious surface based on integrated analysis of single-date Landsat-7 images and geospatial vector data , 2009 .

[77]  K. M. Sim,et al.  Multiple ant-colony optimization for network routing , 2002, First International Symposium on Cyber Worlds, 2002. Proceedings..

[78]  Jia Tao,et al.  Discovery of transition rules for geographical cellular automata by using ant colony optimization , 2007 .

[79]  G. Church,et al.  Systematic determination of genetic network architecture , 1999, Nature Genetics.

[80]  Carlos D. Castillo,et al.  Enhanced duckweed detection using bootstrapped SVM classification on medium resolution RGB MODIS imagery , 2008 .

[81]  Prakash Mondal On the Computational Character of Semantic Structures , 2014, Int. J. Concept. Struct. Smart Appl..

[82]  Nikhil R. Pal,et al.  Fuzzy divergence, probability measure of fuzzy events and image thresholding , 1992, Pattern Recognit. Lett..

[83]  S. Bandyopadhyay,et al.  Nonparametric genetic clustering: comparison of validity indices , 2001, IEEE Trans. Syst. Man Cybern. Syst..

[84]  Vladimir Vapnik,et al.  Estimation of Dependences Based on Empirical Data: Springer Series in Statistics (Springer Series in Statistics) , 1982 .

[85]  Jungho Im,et al.  ISPRS Journal of Photogrammetry and Remote Sensing , 2022 .

[86]  Martin Schäfer,et al.  Cancer gene prioritization by integrative analysis of mRNA expression and DNA copy number data: a comparative review , 2011, Briefings Bioinform..

[87]  Doulaye Dembélé,et al.  Fuzzy C-means Method for Clustering Microarray Data , 2003, Bioinform..

[88]  B. Bouchon-Meunier,et al.  Entropy of similarity relations in questionnaires and decision trees , 1993, [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems.

[89]  Ujjwal Maulik,et al.  Performance Evaluation of Some Clustering Algorithms and Validity Indices , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[90]  S. Bandyopadhyay,et al.  Combining Pareto-optimal clusters using supervised learning for identifying co-expressed genes , 2009, BMC Bioinformatics.

[91]  Donald W. Bouldin,et al.  A Cluster Separation Measure , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[92]  J. Kennedy,et al.  Stereotyping: improving particle swarm performance with cluster analysis , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[93]  Enrique H. Ruspini,et al.  Numerical methods for fuzzy clustering , 1970, Inf. Sci..

[94]  R. Tibshirani,et al.  Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[95]  Ka Yee Yeung,et al.  Validating clustering for gene expression data , 2001, Bioinform..

[96]  Arnold L. Rosenberg,et al.  Bounded-Collision Memory-Mapping Schemes for Data Structures with Applications to Parallel Memories , 2007, IEEE Transactions on Parallel and Distributed Systems.

[97]  Giles M. Foody,et al.  Mapping a specific class for priority habitats monitoring from satellite sensor data , 2006 .

[98]  Heitor Silvério Lopes,et al.  A hybrid particle swarm optimization model for the traveling salesman problem , 2005 .

[99]  Mahesh Pal,et al.  Support vector machine‐based feature selection for land cover classification: a case study with DAIS hyperspectral data , 2006 .

[100]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[101]  Luis Alonso,et al.  Robust support vector method for hyperspectral data classification and knowledge discovery , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[102]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[103]  Sanghamitra Bandyopadhyay,et al.  Analysis of Biological Data: A Soft Computing Approach , 2007, Science, Engineering, and Biology Informatics.

[104]  Guiyun Liu,et al.  An Integrated SVM and Fuzzy AHP Approach for Selecting Third Party Logistics Providers , 2012 .

[105]  Giles M. Foody,et al.  A relative evaluation of multiclass image classification by support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[106]  Thomas Oommen,et al.  Using the one-dimensional S-transform as a discrimination tool in classification of hyperspectral images , 2007 .

[107]  Ujjwal Maulik,et al.  Evolutionary Rough Parallel Multi-Objective Optimization Algorithm , 2010, Fundam. Informaticae.

[108]  Anthony M. Filippi,et al.  Support Vector Machine-Based Endmember Extraction , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[109]  Yunhao Liu,et al.  Effectively Utilizing Global Cluster Memory for Large Data-Intensive Parallel Programs , 2006, IEEE Trans. Parallel Distributed Syst..

[110]  Shigeo Abe,et al.  Fuzzy least squares support vector machines for multiclass problems , 2003, Neural Networks.

[111]  Francesca Bovolo,et al.  A Novel Approach to Unsupervised Change Detection Based on a Semisupervised SVM and a Similarity Measure , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[112]  Vijayan Sugumaran Intelligent support systems : knowledge management , 2002 .

[113]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[114]  Giles M. Foody,et al.  RVM‐based multi‐class classification of remotely sensed data , 2008 .

[115]  Lorenzo Bruzzone,et al.  A Novel Context-Sensitive Semisupervised SVM Classifier Robust to Mislabeled Training Samples , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[116]  H. R. Keshavan,et al.  An optimal multiple threshold scheme for image segmentation , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[117]  Ujjwal Maulik,et al.  Cancer Gene Expression Data Analysis Using Rough Based Symmetrical Clustering , 2013 .

[118]  Zhibin Liu,et al.  Integration of Multi-layer SVM Classifier and Multistage Dynamic Fuzzy Judgement and Its Application in SCDA Measurement , 2009, J. Comput..

[119]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote-sensing data with primal SVM for small-sized training dataset problem☆ , 2008 .

[120]  Osamu Higashi,et al.  A SVM-based method to extract urban areas from DMSP-OLS and SPOT VGT data , 2009 .

[121]  Jon Louis Bentley,et al.  K-d trees for semidynamic point sets , 1990, SCG '90.

[122]  Settimo Termini,et al.  A Definition of a Nonprobabilistic Entropy in the Setting of Fuzzy Sets Theory , 1972, Inf. Control..

[123]  Liangpei Zhang,et al.  A pixel shape index coupled with spectral information for classification of high spatial resolution remotely sensed imagery , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[124]  Jorge S. Reis-Filho,et al.  Microarray-Based Class Discovery for Molecular Classification of Breast Cancer: Analysis of Interobserver Agreement , 2011, Journal of the National Cancer Institute.

[125]  Giles M. Foody,et al.  Training set size requirements for the classification of a specific class , 2006 .

[126]  R. Gloaguen,et al.  Estimation of erosion in tectonically active orogenies. Example from the Bhotekoshi catchment, Himalaya (Nepal) , 2009 .

[127]  Philippe Leray,et al.  A hierarchical Bayesian network approach for linkage disequilibrium modeling and data-dimensionality reduction prior to genome-wide association studies , 2011, BMC Bioinformatics.

[128]  Martin Brown,et al.  Linear spectral mixture models and support vector machines for remote sensing , 2000, IEEE Trans. Geosci. Remote. Sens..

[129]  José Luis Rojo-Álvarez,et al.  Robust support vector regression for biophysical variable estimation from remotely sensed images , 2006, IEEE Geoscience and Remote Sensing Letters.

[130]  Alexander Schliep,et al.  Ranking and selecting clustering algorithms using a meta-learning approach , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[131]  Jianwen Ma,et al.  Feature selection for hyperspectral data based on recursive support vector machines , 2009 .

[132]  Lorenzo Bruzzone,et al.  A Novel Transductive SVM for Semisupervised Classification of Remote-Sensing Images , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[133]  Lorenzo Bruzzone,et al.  Mean Map Kernel Methods for Semisupervised Cloud Classification , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[134]  Bernhard Schölkopf,et al.  Remote Sensing Feature Selection by Kernel Dependence Measures , 2010, IEEE Geoscience and Remote Sensing Letters.

[135]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[136]  Farid Melgani,et al.  Genetic SVM Approach to Semisupervised Multitemporal Classification , 2008, IEEE Geoscience and Remote Sensing Letters.

[137]  Robert Clarke,et al.  Dynamic modelling of oestrogen signalling and cell fate in breast cancer cells , 2011, Nature Reviews Cancer.

[138]  Anirban Mukherjee,et al.  Cancer Classification from Gene Expression Data by NPPC Ensemble , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[139]  Giles M. Foody,et al.  Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification , 2004 .

[140]  Farid Melgani,et al.  Nearest Neighbor Classification of Remote Sensing Images With the Maximal Margin Principle , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[141]  Cheng Wang,et al.  Combining Support Vector Machines With a Pairwise Decision Tree , 2008, IEEE Geoscience and Remote Sensing Letters.

[142]  Begüm Demir,et al.  Clustering-Based Extraction of Border Training Patterns for Accurate SVM Classification of Hyperspectral Images , 2009, IEEE Geoscience and Remote Sensing Letters.

[143]  Wenzhong Shi,et al.  Fuzzy-Topology-Integrated Support Vector Machine for Remotely Sensed Image Classification , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[144]  Jeffrey L. Goldberg,et al.  Newshound Revisited: The Intelligent Agent that Retrieves News Postings , 2002 .

[145]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.

[146]  Guobin Zhu,et al.  Classification using ASTER data and SVM algorithms;: The case study of Beer Sheva, Israel , 2002 .

[147]  Barnali M. Dixon,et al.  Multispectral landuse classification using neural networks and support vector machines: one or the other, or both? , 2008 .

[148]  Farid Melgani,et al.  A Multiobjective Genetic SVM Approach for Classification Problems With Limited Training Samples , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[149]  Ujjwal Maulik,et al.  Development of the human cancer microRNA network , 2010 .

[150]  Liangpei Zhang,et al.  Comparison of Vector Stacking, Multi-SVMs Fuzzy Output, and Multi-SVMs Voting Methods for Multiscale VHR Urban Mapping , 2010, IEEE Geoscience and Remote Sensing Letters.

[151]  S. Durbha,et al.  Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer , 2007 .