Exploiting the generic viewpoint assumption

The “generic viewpoint” assumption states that an observer is not in a special position relative to the scene. It is commonly used to disqualify scene interpretations that assume special viewpoints, following a binary decision that the viewpoint was either generic or accidental. In this paper, we apply Bayesian statistics to quantify the probability of a view, and so derive a useful tool to estimate scene parameters.Generic variables can include viewpoint, object orientation, and lighting position. By considering the image as a (differentiable) function of these variables, we derive the probability that a set of scene parameters created a given image. This scene probability equation has three terms: the fidelity of the scene interpretation to the image data; the prior probability of the scene interpretation; and a new genericity term, which favors scenes likely to produce the observed image. The genericity term favors image interpretations for which the image is stable with respect to changes in the generic variables. It results from integration over the generic variables, using a low-noise approximation common in Bayesian statistics.This approach may increase the scope and accuracy of scene estimates. It applies to a range of vision problems. We show shape from shading examples, where we rank shapes or reflectance functions in cases where these are otherwise unknown. The rankings agree with the perceived values.

[1]  H. Jeffreys,et al.  Theory of probability , 1896 .

[2]  L. M. M.-T. Theory of Probability , 1929, Nature.

[3]  R. A. Fisher,et al.  Statistical methods and scientific inference. , 1957 .

[4]  G. C. Tiao,et al.  A Bayesian approach to the importance of assumptions applied to the comparison of variances , 1964 .

[5]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[6]  Richard A. Johnson Asymptotic Expansions Associated with Posterior Distributions , 1970 .

[7]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[8]  Rory A. Fisher,et al.  Statistical methods and scientific inference. , 1957 .

[9]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[10]  R. Haber,et al.  Visual Perception , 2018, Encyclopedia of Database Systems.

[11]  Berthold K. P. Horn,et al.  Determining Shape and Reflectance Using Multiple Images , 1978 .

[12]  Robert J. Woodham,et al.  Photometric method for determining surface orientation from multiple images , 1980 .

[13]  Thomas O. Binford,et al.  Inferring Surfaces from Images , 1981, Artif. Intell..

[14]  Robert L. Cook,et al.  A Reflectance Model for Computer Graphics , 1987, TOGS.

[15]  Alex Pentland,et al.  Local Shading Analysis , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  W. Eric L. Grimson,et al.  Binocular shading and visual surface reconstruction , 1984, Comput. Vis. Graph. Image Process..

[18]  Irving Biederman,et al.  Human image understanding: Recent research and a theory , 1985, Comput. Vis. Graph. Image Process..

[19]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[20]  M. Rycroft Ionospheric physics: How to make a long antenna , 1985, Nature.

[21]  Azriel Rosenfeld,et al.  Improved Methods of Estimating Shape from Shading Using the Light Source Coordinate System , 1985, Artif. Intell..

[22]  Michael J. Brooks,et al.  Shape and Source from Shading , 1985, IJCAI.

[23]  Thomas O. Binford,et al.  The Recovery of Three-Dimensional Structure from Image Curves , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Demetri Terzopoulos,et al.  Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  William F. Schreiber,et al.  Fundamentals of Electronic Imaging Systems , 1986 .

[26]  David Lindley,et al.  Bayesian Statistics, a Review , 1987 .

[27]  S. Gull Bayesian Inductive Inference and Maximum Entropy , 1988 .

[28]  Stuart German,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1988 .

[29]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[30]  J. Skilling Classic Maximum Entropy , 1989 .

[31]  Stephen F. Gull,et al.  Developments in Maximum Entropy Data Analysis , 1989 .

[32]  Berthold K. P. Horn,et al.  Shape from shading , 1989 .

[33]  Heinrich H. Bülthoff,et al.  Bayesian Models for Seeing Shapes and Depth , 1990 .

[34]  Alex Pentland,et al.  Segmentation by minimal description , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[35]  Rama Chellappa,et al.  Estimation of illuminant direction, albedo, and shape from shading , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[36]  M. Landy,et al.  Transparency and the Cooperative Computation of Scene Attributes , 1991 .

[37]  Alex Pentland Photometric Motion , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Aaron F. Bobick,et al.  The direct computation of height from shading , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[39]  D. G. Albrecht,et al.  Motion selectivity and the contrast-response function of simple cells in the visual cortex , 1991, Visual Neuroscience.

[40]  D. Kersten Transparency and the cooperative computation of scene attributes , 1991 .

[41]  Azriel Rosenfeld,et al.  3-D Shape Recovery Using Distributed Aspect Matching , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[43]  Allan D. Jepson,et al.  What Makes a Good Feature , 1992 .

[44]  Alex Pentland,et al.  A simple algorithm for shape from shading , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[45]  K Nakayama,et al.  Experiencing and perceiving visual surfaces. , 1992, Science.

[46]  Richard Szeliski,et al.  Impossible Shaded Images , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  William T. Freeman,et al.  Exploiting the generic view assumption to estimate scene parameters , 1993, 1993 (4th) International Conference on Computer Vision.

[48]  William T. Freeman,et al.  The generic viewpoint assumption in a framework for visual perception , 1994, Nature.

[49]  Michael Jenkin,et al.  Spatial vision in humans and robots , 1994 .

[50]  William T. Freeman,et al.  Bayesian method for recovering surface and illuminant properties from photosensor responses , 1994, Electronic Imaging.

[51]  Michael Werman,et al.  Stability and Likelihood of Views of Three Dimensional Objects , 1994, ECCV.

[52]  PsychophysicsAlan L. YuilleDivision Bayesian Decision Theory and , 1994 .

[53]  David J. Heeger,et al.  Model of visual motion sensing , 1994 .

[54]  M. Carandini,et al.  Summation and division by neurons in primate visual cortex. , 1994, Science.

[55]  Donald D. Hoffman,et al.  Genericity in spatial vision , 1995 .

[56]  William T. Freeman,et al.  Bayesian decision theory, the maximum local mass estimate, and color constancy , 1995, Proceedings of IEEE International Conference on Computer Vision.

[57]  P. Laplace Théorie analytique des probabilités , 1995 .

[58]  William T. Freeman,et al.  The generic viewpoint assumption in a Bayesian framework , 1996 .

[59]  A. Yuille,et al.  Bayesian decision theory and psychophysics , 1996 .

[60]  David C. Knill,et al.  Introduction: a Bayesian formulation of visual perception , 1996 .

[61]  P. Belhumeur A computational theory for binocular stereopsis , 1996 .

[62]  A. U.S.,et al.  Recovering Surface Shape and Orientation from Texture , 2002 .

[63]  William H. Press,et al.  Numerical recipes in C , 2002 .

[64]  A. W. Inferring three-dimensional shapes from two-dimensional silhouettes , 2002 .

[65]  Yvan G. Leclerc,et al.  Constructing simple stable descriptions for image partitioning , 1989, International Journal of Computer Vision.

[66]  J. Koenderink,et al.  The internal representation of solid shape with respect to vision , 1979, Biological Cybernetics.

[67]  G. Nemes Asymptotic Expansions of Integrals , 2004 .

[68]  Wojciech Chojnacki,et al.  Impossible and ambiguous shading patterns , 2004, International Journal of Computer Vision.

[69]  Berthold K. P. Horn Height and gradient from shading , 1989, International Journal of Computer Vision.

[70]  Richard Szeliski,et al.  Bayesian modeling of uncertainty in low-level vision , 2011, International Journal of Computer Vision.

[71]  Alex Pentland,et al.  Automatic extraction of deformable part models , 1990, International Journal of Computer Vision.

[72]  Alex Pentland Linear shape from shading , 2004, International Journal of Computer Vision.

[73]  Jitendra Malik,et al.  Interpreting line drawings of curved objects , 1986, International Journal of Computer Vision.