Uniform preconditioners for the time dependent Stokes problem

Summary.Implicit time stepping procedures for the time dependent Stokes problem lead to stationary singular perturbation problems at each time step. These singular perturbation problems are systems of saddle point type, which formally approach a mixed formulation of the Poisson equation as the time step tends to zero. Preconditioners for discrete analogous of these systems are discussed. The preconditioners uses standard positive definite elliptic preconditioners as building blocks and lead to condition numbers which are bounded uniformly with respect to the time step and the spatial discretization. The construction of the discrete preconditioners is related to the mapping properties of the corresponding continuous system.

[1]  Xue-Cheng Tai,et al.  A Robust Finite Element Method for Darcy-Stokes Flow , 2002, SIAM J. Numer. Anal..

[2]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[3]  L. Pavarino Indefinite overlapping Schwarz methods for time-dependent Stokes problems☆ , 2000 .

[4]  Axel Klawonn,et al.  An Optimal Preconditioner for a Class of Saddle Point Problems with a Penalty Term , 1995, SIAM J. Sci. Comput..

[5]  Kent-André Mardal,et al.  Uniform preconditioners for the time dependent Stokes problem , 2006, Numerische Mathematik.

[6]  Rüdiger Verfürth,et al.  Error estimates for a mixed finite element approximation of the Stokes equations , 1984 .

[7]  H. Elman Preconditioners for saddle point problems arising in computational fluid dynamics , 2002 .

[8]  Maxim A. Olshanskii,et al.  Uniform preconditioners for a parameter dependent saddle point problem with application to generalized Stokes interface equations , 2006, Numerische Mathematik.

[9]  Susanne C. Brenner,et al.  Multigrid methods for parameter dependent problems , 1996 .

[10]  Jinchao Xu,et al.  The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids , 1996, Computing.

[11]  H. Elman,et al.  Block preconditioners for the discrete incompressible Navier–Stokes equations , 2002 .

[12]  Monique Dauge,et al.  Stationary Stokes and Navier-Stokes systems on two-or three-dimensional domains with corners , 1989 .

[13]  R. Verfürth A Multilevel Algorithm for Mixed Problems , 1984 .

[14]  Stefan Turek,et al.  Efficient Solvers for Incompressible Flow Problems - An Algorithmic and Computational Approach , 1999, Lecture Notes in Computational Science and Engineering.

[15]  D. Arnold,et al.  Preconditioning discrete approximations of the Reissner-Mindlin plate model , 1997 .

[16]  Anthony T. Patera,et al.  Analysis of Iterative Methods for the Steady and Unsteady Stokes Problem: Application to Spectral Element Discretizations , 1993, SIAM J. Sci. Comput..

[17]  Dietrich Braess,et al.  A multigrid method for a parameter dependent problem in solid mechanics , 1990 .

[18]  Ragnar Winther,et al.  A domain embedding preconditioner for the Lagrange multiplier system , 2000, Math. Comput..

[19]  Panayot S. Vassilevski,et al.  Interior penalty preconditioners for mixed finite element approximations of elliptic problems , 1996, Math. Comput..

[20]  O. Pironneau,et al.  Error estimates for finite element method solution of the Stokes problem in the primitive variables , 1979 .

[21]  J. Cahouet,et al.  Some fast 3D finite element solvers for the generalized Stokes problem , 1988 .

[22]  W. Hackbusch Iterative Solution of Large Sparse Systems of Equations , 1993 .

[23]  A. Wathen,et al.  Schur complement preconditioners for the Navier–Stokes equations , 2002 .

[24]  Ragnar Winther,et al.  A Preconditioned Iterative Method for Saddlepoint Problems , 1992, SIAM J. Matrix Anal. Appl..

[25]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[26]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[27]  J. Pasciak,et al.  Iterative techniques for time dependent Stokes problems , 1997 .

[28]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[29]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[30]  Rolf Stenberg,et al.  Error analysis of some nite element methods for the Stokes problem , 1990 .

[31]  R. Glowinski,et al.  Incompressible Computational Fluid Dynamics: On Some Finite Element Methods for the Numerical Simulation of Incompressible Viscous Flow , 1993 .

[32]  Maxim A. Olshanskii,et al.  Navier-Stokes Equations in Rotation Form: A Robust Multigrid Solver for the Velocity Problem , 2002, SIAM J. Sci. Comput..