Temporal and spectral nonlinear pulse shaping methods in optical fibers

[1]  G. Millot,et al.  Two-stage linear-nonlinear shaping of an optical frequency comb as rogue nonlinear-Schrodinger-equation-solution generator , 2014 .

[2]  J. Li,et al.  Observation of soliton compression in silicon photonic crystals , 2014, Nature Communications.

[3]  Guy Millot,et al.  Collision of Akhmediev Breathers in Nonlinear Fiber Optics , 2013 .

[4]  P. Petropoulos,et al.  Broadband, Flat Frequency Comb Generated Using Pulse Shaping-Assisted Nonlinear Spectral Broadening , 2013, IEEE Photonics Technology Letters.

[5]  B. Wetzel,et al.  Real-time full bandwidth measurement of spectral noise in supercontinuum generation , 2012, Scientific Reports.

[6]  Sergei K. Turitsyn,et al.  Amplifier similariton fibre laser with nonlinear spectral compression , 2012, 2012 38th European Conference and Exhibition on Optical Communications.

[7]  H. Rigneault,et al.  All-fiber spectral compression of picosecond pulses at telecommunication wavelength enhanced by amplitude shaping. , 2012, Applied Optics.

[8]  J. Fatome,et al.  Observation of Kuznetsov-Ma soliton dynamics in optical fibre , 2012, Scientific Reports.

[9]  S. Turitsyn,et al.  Intermediate asymptotics in nonlinear optical systems , 2012 .

[10]  N. Hoffmann,et al.  Super Rogue Waves: Observation of a Higher-Order Breather in Water Waves , 2012 .

[11]  C. Finot,et al.  Higher-order modulation instability in nonlinear fiber optics. , 2011, Physical review letters.

[12]  C. Finot,et al.  Pulse doubling and wavelength conversion through triangular nonlinear pulse reshaping , 2011 .

[13]  Jens Limpert,et al.  Generation of high quality, 1.3 cycle pulses by active phase control of an octave spanning supercontinuum. , 2011, Optics express.

[14]  C. Finot,et al.  Nonlinear Pulse Shaping in Fibres for Pulse Generation and Optical Processing , 2011 .

[15]  Christophe Finot,et al.  Effects of fourth-order fiber dispersion on ultrashort parabolic optical pulses in the normal dispersion regime , 2011 .

[16]  C. Finot,et al.  Rogue waves, rational solitons and wave turbulence theory , 2011 .

[17]  Julien Fatome,et al.  All-Fibered High-Quality Stable 20- and 40-GHz Picosecond Pulse Generators for 160-Gb/s OTDM Applications , 2011, IEEE Photonics Technology Letters.

[18]  Scott A. Diddams,et al.  Mid-infrared upconversion spectroscopy based on a Yb:fiber femtosecond laser , 2011, 1108.0943.

[19]  B. Wetzel,et al.  Akhmediev breather evolution in optical fiber for realistic initial conditions , 2011 .

[20]  W. Wadsworth,et al.  Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion. , 2011, Optics express.

[21]  Esben Ravn Andresen,et al.  Transform-limited spectral compression by self-phase modulation of amplitude-shaped pulses with negative chirp. , 2011, Optics letters.

[22]  G. Millot,et al.  Peregrine soliton generation and breakup in standard telecommunications fiber. , 2011, Optics letters.

[23]  Frédéric Dias,et al.  The Peregrine soliton in nonlinear fibre optics , 2010 .

[24]  Martijn de Sterke,et al.  Characterization and optimization of photonic crystal fibers for enhanced soliton self-frequency shift , 2010 .

[25]  Andy Chong,et al.  Self-similar pulse evolution in an all-normal-dispersion laser. , 2010, Physical review. A, Atomic, molecular, and optical physics.

[26]  G. Millot,et al.  Extreme events in optics: Challenges of the MANUREVA project , 2010 .

[27]  S. Wabnitz,et al.  Strong spectral filtering for a mode-locked similariton fiber laser. , 2010, Optics letters.

[28]  C. Finot,et al.  Emergence of rogue waves from optical turbulence , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[29]  Etienne Samain,et al.  Multiple four-wave mixing in optical fibers: 1.5-3.4-THz femtosecond pulse sources and real-time monitoring of a 20-GHz picosecond source , 2010 .

[30]  F. Ömer Ilday,et al.  Soliton–similariton fibre laser , 2010 .

[31]  J. Harvey,et al.  Experimental realisation of a mode-locked parabolic Raman fiber oscillator , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[32]  J. R. Taylor,et al.  Supercontinuum Generation in Optical Fibers , 2016 .

[33]  O. Bang,et al.  Collisions and turbulence in optical rogue wave formation , 2010 .

[34]  S. Turitsyn,et al.  Generation of triangular-shaped optical pulses in normally dispersive fibre , 2010 .

[35]  A. Mussot,et al.  Third-order dispersion for generating optical rogue solitons , 2010 .

[36]  A. A. Amorim,et al.  Sub-two-cycle pulses by soliton self-compression in highly nonlinear photonic crystal fibers. , 2009, Optics letters.

[37]  F. Dias,et al.  Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation. , 2009, Optics express.

[38]  J. Soto-Crespo,et al.  Extreme waves that appear from nowhere: On the nature of rogue waves , 2009 .

[39]  J. Dudley,et al.  Route to Coherent Supercontinuum Generation in the Long Pulse Regime , 2009, IEEE Journal of Quantum Electronics.

[40]  Kharif Christian,et al.  Rogue Waves in the Ocean , 2009 .

[41]  B. Jalali,et al.  Active control of rogue waves for stimulated supercontinuum generation. , 2008, Physical review letters.

[42]  S. Boscolo,et al.  Passive Nonlinear Pulse Shaping in Normally Dispersive Fiber Systems , 2008, IEEE Journal of Quantum Electronics.

[43]  Lionel Provost,et al.  Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers , 2008 .

[44]  G. Millot,et al.  Real-time measurement of long parabolic optical similaritons , 2008 .

[45]  B. Jalali,et al.  Optical rogue waves , 2007, Nature.

[46]  Guy Millot,et al.  Parabolic pulse generation with active or passive dispersion decreasing optical fibers. , 2007, Optics express.

[47]  G. Millot,et al.  All-Fibered High-Quality Low Duty-Cycle 20-GHz and 40-GHz Picosecond Pulse Sources , 2007, IEEE Photonics Technology Letters.

[48]  M Hanna,et al.  Generation of 63 fs 4.1 MW peak power pulses from a parabolic fiber amplifier operated beyond the gain bandwidth limit. , 2007, Optics letters.

[49]  G. Millot,et al.  Self-similarity in ultrafast nonlinear optics , 2007 .

[50]  F. Courvoisier,et al.  Optimised one-step compression of femtosecond fibre laser soliton pulses around 1550nm to below 30 fs in highly nonlinear fibre , 2007 .

[51]  Sergei K. Turitsyn,et al.  Experiments on the generation of parabolic pulses in fibers with length-varying normal chromatic dispersion , 2007 .

[52]  Periklis Petropoulos,et al.  Parabolic pulse generation through passive nonlinear pulse reshaping in a normally dispersive two segment fiber device. , 2007, Optics express.

[53]  J. Harvey,et al.  Asymptotically exact parabolic solutions of the generalized nonlinear Schrödinger equation with varying parameters , 2006 .

[54]  D. Richardson,et al.  Pulse compression at 1.06 μm in dispersion-decreasing holey fibers , 2006 .

[55]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[56]  J. Fatome,et al.  20-GHz-to-1-THz Repetition Rate Pulse Sources Based on Multiple Four-Wave Mixing in Optical Fibers , 2006, IEEE Journal of Quantum Electronics.

[57]  Francesca Parmigiani,et al.  Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating. , 2006, Optics express.

[58]  Esben Ravn Andresen,et al.  Tunable light source for coherent anti-Stokes Raman scattering microspectroscopy based on the soliton self-frequency shift. , 2006, Optics letters.

[59]  J. Gordon,et al.  Solitons in Optical Fibers: Fundamentals and Applications , 2006 .

[60]  Esben Ravn Andresen,et al.  Spectral compression of femtosecond pulses in photonic crystal fibers. , 2005, Optics letters.

[61]  C. Billet,et al.  Intermediate asymptotic evolution and photonic bandgap fibre compression of optical similaritons around 1550 nm , 2005, CLEO/Europe. 2005 Conference on Lasers and Electro-Optics Europe, 2005..

[62]  J. Limpert,et al.  High-power picosecond fiber amplifier based on nonlinear spectral compression. , 2005, Optics letters.

[63]  G. Millot,et al.  Numerical and experimental study of parabolic pulses generated via Raman amplification in standard optical fibers , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[64]  Yasuyuki Ozeki,et al.  Generation of 10 GHz similariton pulse trains from 1.2 km-long erbium-doped fibre amplifier for application to multi-wavelength pulse sources , 2004 .

[65]  Masataka Nakazawa,et al.  Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion. , 2004, Optics letters.

[66]  F. Wise,et al.  Self-similar evolution of parabolic pulses in a laser. , 2004, Physical review letters.

[67]  P. Petropoulos,et al.  A 36-channel x 10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber , 2003, IEEE Photonics Technology Letters.

[68]  P. Russell,et al.  Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers , 2003, Science.

[69]  R. Windeler,et al.  Fundamental noise limitations on supercontinuum generation in microstructure fiber , 2002, 2003 European Quantum Electronics Conference. EQEC 2003 (IEEE Cat No.03TH8665).

[70]  S. Turitsyn,et al.  Self-Similar Parabolic Optical Solitary Waves , 2002 .

[71]  G. Millot,et al.  Generation of a 160-GHz transform-limited pedestal-free pulse train through multiwave mixing compression of a dual-frequency beat signal. , 2002, Optics letters.

[72]  Jens Limpert,et al.  High-power femtosecond Yb-doped fiber amplifier. , 2002, Optics express.

[73]  J. Limpert,et al.  SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier , 2002 .

[74]  B C Thomsen,et al.  Self-similar propagation and amplification of parabolic pulses in optical fibers. , 2000, Physical review letters.

[75]  A. Weiner Femtosecond pulse shaping using spatial light modulators , 2000 .

[76]  J. A. Buck,et al.  Transform-limited spectral compression due to self-phase modulation in fibers. , 2000, Optics letters.

[77]  Eiji Yoshida,et al.  Coherence Degradation in the Process of Supercontinuum Generation in an Optical Fiber , 1998 .

[78]  G. I. Barenblatt Scaling: Self-similarity and intermediate asymptotics , 1996 .

[79]  S. Wabnitz,et al.  Analytical theory of guiding-center nonreturn-to-zero and return-to-zero signal transmission in normally dispersive nonlinear optical fibers. , 1995, Optics letters.

[80]  J R Taylor,et al.  Comblike dispersion-profiled fiber for soliton pulse train generation. , 1994, Optics letters.

[81]  S. V. Chernikov,et al.  Experimental demonstration of step-like dispersion profiling in optical fibre for soliton pulse generation and compression , 1994 .

[82]  Stegeman,et al.  Adiabatic compression of Schrödinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response. , 1993, Physical review letters.

[83]  Magnus Karlsson,et al.  Wave-breaking-free pulses in nonlinear-optical fibers , 1993 .

[84]  C. Cruz,et al.  Spectral narrowing in the propagation of chirped pulses in single-mode fibers. , 1993, Optics letters.

[85]  David J. Richardson,et al.  Picosecond soliton pulse compressor based on dispersion decreasing fibre , 1992 .

[86]  Mietek Lisak,et al.  Wave breaking in nonlinear-optical fibers , 1992 .

[87]  S. V. Chernikov,et al.  Femtosecond soliton propagation in fibers with slowly decreasing dispersion , 1991 .

[88]  V. A. Semenov,et al.  A single-mode fiber with chromatic dispersion varying along the length , 1991 .

[89]  Partha P Banerjee,et al.  Principles of Nonlinear Optics , 1989 .

[90]  N. Akhmediev,et al.  Modulation instability and periodic solutions of the nonlinear Schrödinger equation , 1986 .

[91]  J. Gordon,et al.  Theory of the soliton self-frequency shift. , 1986, Optics letters.

[92]  L. Mollenauer,et al.  Discovery of the soliton self-frequency shift. , 1986, Optics letters.

[93]  Hasegawa,et al.  Observation of modulational instability in optical fibers. , 1986, Physical review letters.

[94]  R. Stolen,et al.  Optical wave breaking of pulses in nonlinear optical fibers. , 1985, Optics letters.

[95]  A. Hasegawa,et al.  Generation of a train of soliton pulses by induced modulational instability in optical fibers. , 1984, Optics letters.

[96]  Charles V. Shank,et al.  Compression of optical pulses chirped by self-phase modulation in fibers , 1984 .

[97]  D. H. Peregrine,et al.  Water waves, nonlinear Schrödinger equations and their solutions , 1983, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[98]  Daniel R. Grischkowsky,et al.  Optical pulse compression based on enhanced frequency chirping , 1982 .

[99]  James P. Gordon,et al.  Experimental observation of picosecond pulse narrowing and solitons in optical fibers (A) , 1980 .

[100]  Yan‐Chow Ma,et al.  The Perturbed Plane‐Wave Solutions of the Cubic Schrödinger Equation , 1979 .

[101]  Hiroshi Inoue,et al.  Inverse Scattering Method for the Nonlinear Evolution Equations under Nonvanishing Conditions , 1978 .

[102]  E. Kuznetsov,et al.  Solitons in a parametrically unstable plasma , 1977 .

[103]  Akira Hasegawa,et al.  Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion , 1973 .

[104]  B.J. Eggleton,et al.  Reconfigurable Optical Pulse Generator Employing a Fourier-Domain Programmable Optical Processor , 2010, Journal of Lightwave Technology.

[105]  C. Finot,et al.  Spectral compression of optical parabolic similaritons , 2007 .

[106]  L. Boivin,et al.  Spectrum Slicing of Coherent Sources in Optical Communications , 2001 .

[107]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .