Blended cured quasi-newton for distortion optimization

Optimizing distortion energies over a mesh, in two or three dimensions, is a common and critical problem in physical simulation and geometry processing. We present three new improvements to the state of the art: a barrier-aware line-search filter that cures blocked descent steps due to element barrier terms and so enables rapid progress; an energy proxy model that adaptively blends the Sobolev (inverse-Laplacian-processed) gradient and L-BFGS descent to gain the advantages of both, while avoiding L-BFGS's current limitations in distortion optimization tasks; and a characteristic gradient norm providing a robust and largely mesh- and energy-independent convergence criterion that avoids wrongful termination when algorithms temporarily slow their progress. Together these improvements form the basis for Blended Cured Quasi-Newton (BCQN), a new distortion optimization algorithm. Over a wide range of problems over all scales we show that BCQN is generally the fastest and most robust method available, making some previously intractable problems practical while offering up to an order of magnitude improvement in others.

[1]  M. Mooney A Theory of Large Elastic Deformation , 1940 .

[2]  R. Ogden Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  D. Rose,et al.  Generalized nested dissection , 1977 .

[4]  J. Neuberger Steepest descent and differential equations , 1985 .

[5]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[6]  Nicholas J. Highamy Estimating the matrix p-norm , 1992 .

[7]  A. Fischer A special newton-type optimization method , 1992 .

[8]  N. Higham Estimating the matrixp-norm , 1992 .

[9]  R. Rivlin Some Applications of Elasticity Theory to Rubber Engineering , 1997 .

[10]  J. Bonet,et al.  A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations , 1998 .

[11]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[12]  K. Hormann,et al.  MIPS: An Efficient Global Parametrization Method , 2000 .

[13]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[14]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[15]  Richard H. Byrd,et al.  A Preconditioned L-BFGS Algorithm with Application to Molecular Energy Minimization , 2004 .

[16]  Ronald Fedkiw,et al.  Robust quasistatic finite elements and flesh simulation , 2005, SCA '05.

[17]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[18]  Pierre Alliez,et al.  Spectral Conformal Parameterization , 2008, Comput. Graph. Forum.

[19]  Ligang Liu,et al.  A Local/Global Approach to Mesh Parameterization , 2008, Comput. Graph. Forum.

[20]  Craig Gotsman,et al.  Conformal Flattening by Curvature Prescription and Metric Scaling , 2008, Comput. Graph. Forum.

[21]  YANQING CHEN,et al.  Algorithm 8 xx : CHOLMOD , supernodal sparse Cholesky factorization and update / downdate ∗ , 2006 .

[22]  A. Bower Applied Mechanics of Solids , 2009 .

[23]  P. Schröder,et al.  A simple geometric model for elastic deformations , 2010, SIGGRAPH 2010.

[24]  Eitan Grinspun,et al.  Reflections on simultaneous impact , 2012, ACM Trans. Graph..

[25]  Yaron Lipman,et al.  Bounded distortion mapping spaces for triangular meshes , 2012, ACM Trans. Graph..

[26]  Denis Zorin,et al.  Computing Extremal Quasiconformal Maps , 2012, Comput. Graph. Forum.

[27]  Mirela Ben-Chen,et al.  Planar shape interpolation with bounded distortion , 2013, ACM Trans. Graph..

[28]  Tobias Martin,et al.  Efficient Non‐linear Optimization via Multi‐scale Gradient Filtering , 2013, Comput. Graph. Forum.

[29]  Pierre Alliez,et al.  Integer-grid maps for reliable quad meshing , 2013, ACM Trans. Graph..

[30]  Mihai Anitescu,et al.  Real-Time Stochastic Optimization of Complex Energy Systems on High-Performance Computers , 2014, Computing in Science & Engineering.

[31]  Cosmin G. Petra,et al.  An Augmented Incomplete Factorization Approach for Computing the Schur Complement in Stochastic Optimization , 2014, SIAM J. Sci. Comput..

[32]  Baining Guo,et al.  Computing locally injective mappings by advanced MIPS , 2015, ACM Trans. Graph..

[33]  Hongyi Xu,et al.  Nonlinear material design using principal stretches , 2015, ACM Trans. Graph..

[34]  Ronen Basri,et al.  Large-scale bounded distortion mappings , 2015, ACM Trans. Graph..

[35]  Scott Schaefer,et al.  Bijective parameterization with free boundaries , 2015, ACM Trans. Graph..

[36]  Roi Poranne,et al.  Seamless surface mappings , 2015, ACM Trans. Graph..

[37]  Yaron Lipman,et al.  Accelerated quadratic proxy for geometric optimization , 2016, ACM Trans. Graph..

[38]  Yin Yang,et al.  Descent methods for elastic body simulation on the GPU , 2016, ACM Trans. Graph..

[39]  Scalable Locally Injective Mappings , 2017, ACM Trans. Graph..

[40]  L. Kavan,et al.  Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials , 2017, ACM Trans. Graph..

[41]  Olga Sorkine-Hornung,et al.  Geometric optimization via composite majorization , 2017, ACM Trans. Graph..

[42]  Scott Schaefer,et al.  Isometry‐Aware Preconditioning for Mesh Parameterization , 2017, Comput. Graph. Forum.

[43]  Ofir Weber,et al.  GPU-accelerated locally injective shape deformation , 2017, ACM Trans. Graph..

[44]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .