Active disturbance rejection control for fractional-order system.

Fractional-order proportional-integral (PI) and proportional-integral-derivative (PID) controllers are the most commonly used controllers in fractional-order systems. However, this paper proposes a simple integer-order control scheme for fractional-order system based on active disturbance rejection method. By treating the fractional-order dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. External disturbance, sensor noise, and parameter disturbance are also estimated using extended state observer. The ADRC stability of rational-order model is analyzed. Simulation results on three typical fractional-order systems are provided to demonstrate the effectiveness of the proposed method.

[1]  A. Oustaloup CRONE Control: Principle, synthesis, performances with non-linearities and robustness-input immunity dilemma , 1990 .

[2]  I. Podlubny,et al.  On fractional derivatives, fractional-order dynamic systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[3]  Zhiqiang Gao,et al.  An alternative paradigm for control system design , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[4]  Vicente Feliu,et al.  Fractional-order Control of a Flexible Manipulator , 2007 .

[5]  Yuanqing Xia,et al.  Active disturbance rejection control for uncertain multivariable systems with time-delay , 2007 .

[6]  Concepción A. Monje,et al.  Tip position control of a lightweight flexible manipulator using a fractional order controller , 2007 .

[7]  Zhiqiang Gao,et al.  A Dynamic Decoupling Control Approach and Its Applications to Chemical Processes , 2007, 2007 American Control Conference.

[8]  Zhiqiang Gao,et al.  Active disturbance rejection control: a paradigm shift in feedback control system design , 2006, 2006 American Control Conference.

[9]  Yi Huang,et al.  Flight control design using extended state observer and non-smooth feedback , 2001 .

[10]  Yao Zhang,et al.  A robust decentralized load frequency controller for interconnected power systems. , 2012, ISA transactions.

[11]  Mohamed Karim Bouafoura,et al.  PI λ D μ controller design for integer and fractional plants using piecewise orthogonal functions , 2010 .

[12]  Y. Chen,et al.  Tuning fractional order proportional integral controllers for fractional order systems , 2010 .

[13]  Mohammad Haeri,et al.  Design of fractional order proportional–integral–derivative controller based on moment matching and characteristic ratio assignment method , 2011 .

[14]  Zhiqiang Gao,et al.  On Validation of Extended State Observer Through Analysis and Experimentation , 2012 .

[15]  Tao Yu,et al.  Coordinated robust nonlinear boiler-turbine-generator control systems via approximate dynamic feedback linearization , 2010 .

[16]  Shantanu Das,et al.  Improved Model Reduction and Tuning of Fractional Order PIλDμ Controllers for Analytical Rule Extraction with Genetic Programming , 2012, ISA transactions.

[17]  Igor Podlubny,et al.  On Fractional Derivatives, Fractional-Orlder Dynamic Systems and PIXD~-controllei~s , 1997 .

[18]  Zhiqiang Gao,et al.  A novel practical control approach for rate independent hysteretic systems. , 2012, ISA transactions.

[19]  YangQuan Chen,et al.  Fractional order control - A tutorial , 2009, 2009 American Control Conference.

[20]  Suman Saha,et al.  On the Selection of Tuning Methodology of FOPID Controllers for the Control of Higher Order Processes , 2011, ISA transactions.

[21]  R. Bagley,et al.  On the Appearance of the Fractional Derivative in the Behavior of Real Materials , 1984 .

[22]  Zhiqiang Gao,et al.  On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics , 2007, 2007 46th IEEE Conference on Decision and Control.

[23]  Mohammad Haeri,et al.  Fractional order model reduction approach based on retention of the dominant dynamics: application in IMC based tuning of FOPI and FOPID controllers. , 2011, ISA transactions.

[24]  Ajith Abraham,et al.  Design of fractional-order PIlambdaDµ controllers with an improved differential evolution , 2009, Eng. Appl. Artif. Intell..

[25]  Zhiqiang Gao,et al.  Frequency Response Analysis of Active Disturbance Rejection Based Control System , 2007, 2007 IEEE International Conference on Control Applications.

[26]  Zhiqiang Gao,et al.  A Stability Study of the Active Disturbance Rejection Control Problem by a Singular Perturbation Approach , 2009 .

[27]  Vicente Feliú Batlle,et al.  Optimal Fractional Controllers for Rational Order Systems: A Special Case of the Wiener-Hopf Spectral Factorization Method , 2007, IEEE Transactions on Automatic Control.

[28]  Zhiqiang Gao,et al.  A DSP-based active disturbance rejection control design for a 1-kW H-bridge DC-DC power converter , 2005, IEEE Trans. Ind. Electron..

[29]  Yangquan Chen,et al.  Fractional order [proportional derivative] controller for a class of fractional order systems , 2009, Autom..

[30]  Zhiqiang Gao,et al.  A DYNAMIC DECOUPLING METHOD FOR CONTROLLING HIGH PERFORMANCE TURBOFAN ENGINES , 2005 .

[31]  A. Ostrowski Solution of equations in Euclidean and Banach spaces , 1973 .

[32]  Zhiqiang Gao,et al.  Benchmark tests of Active Disturbance Rejection Control on an industrial motion control platform , 2009, 2009 American Control Conference.

[33]  Chunzhe Zhao,et al.  Capability of ADRC for minimum-phase plants with unknown orders and uncertain relative degrees , 2010, Proceedings of the 29th Chinese Control Conference.

[34]  Masoud Karimi-Ghartemani,et al.  Method for designing PI λ D μ stabilisers for minimum-phase fractional-order systems , 2010 .

[35]  Alain Oustaloup,et al.  CRONE Control: Principles and Extension to Time-Variant Plants with Asymptotically Constant Coefficients , 2002 .

[36]  Y. Chen,et al.  A fractional order PID tuning algorithm for a class of fractional order plants , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[37]  Zhiqiang Gao,et al.  Motion Control Design Optimization : Problem and Solutions , 2006 .

[38]  S. Westerlund,et al.  Capacitor theory , 1994 .

[39]  YangQuan Chen,et al.  UBIQUITOUS FRACTIONAL ORDER CONTROLS , 2006 .

[40]  B. Vinagre,et al.  FRACTIONAL DIGITAL CONTROL OF A HEAT SOLID : EXPERIMENTAL RESULTS , 2002 .

[41]  Paluri S. V. Nataraj,et al.  Computation of spectral sets for uncertain linear fractional-order systems , 2010 .

[42]  J Han CONTROL THEORY,IS IT A MODEL ANALYSIS APPROACH OR A DIRECT CONTROL APPROACH? , 1989 .

[43]  YangQuan Chen,et al.  Fractional-order Systems and Controls , 2010 .

[44]  Saptarshi Das,et al.  Handling Packet Dropouts and Random Delays for Unstable Delayed Processes in NCS by Optimal Tuning of PIλDμ Controllers with Evolutionary Algorithms , 2011, ISA transactions.

[45]  Zhiqiang Gao,et al.  Control and Rotation Rate Estimation of Vibrational MEMS Gyroscopes , 2007, 2007 IEEE International Conference on Control Applications.

[46]  Xavier Moreau,et al.  The CRONE Suspension , 1996 .

[47]  Jingqing Han,et al.  From PID to Active Disturbance Rejection Control , 2009, IEEE Trans. Ind. Electron..

[48]  Zhiqiang Gao,et al.  Scaling and bandwidth-parameterization based controller tuning , 2003, Proceedings of the 2003 American Control Conference, 2003..

[49]  Anissa Zergaïnoh-Mokraoui,et al.  State-space representation for fractional order controllers , 2000, Autom..

[50]  Zhiqiang Gao,et al.  Active disturbance rejection control for MEMS gyroscopes , 2008, 2008 American Control Conference.

[51]  Ying Luo,et al.  Fractional order ultra low-speed position servo: improved performance via describing function analysis. , 2011, ISA transactions.

[52]  Dan Wu,et al.  Design and Analysis of Precision Active Disturbance Rejection Control for Noncircular Turning Process , 2009, IEEE Transactions on Industrial Electronics.

[53]  Yangquan Chen,et al.  A Fractional Order Proportional and Derivative (FOPD) Motion Controller: Tuning Rule and Experiments , 2010, IEEE Transactions on Control Systems Technology.

[54]  J. Sabatier,et al.  The CRONE aproach: Theoretical developments and major applications , 2006 .

[55]  Serdar Ethem Hamamci An Algorithm for Stabilization of Fractional-Order Time Delay Systems Using Fractional-Order PID Controllers , 2007, IEEE Transactions on Automatic Control.

[56]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[57]  D. Matignon Stability properties for generalized fractional differential systems , 1998 .

[58]  Zhiqiang Gao,et al.  A novel motion control design approach based on active disturbance rejection , 2001 .