Patch-Based Video Processing: A Variational Bayesian Approach

In this paper, we present a patch-based variational Bayesian framework for video processing and demonstrate its potential in denoising, inpainting and deinterlacing. Unlike previous methods based on explicit motion estimation, we propose to embed motion-related information into the relationship among video patches and develop a nonlocal sparsity-based prior for typical video sequences. Specifically, we first extend block matching (nearest neighbor search) into patch clustering (k-nearest-neighbor search), which represents motion in an implicit and distributed fashion. Then we show how to exploit the sparsity constraint by sorting and packing similar patches, which can be better understood from a manifold perspective. Under the Bayesian framework, we treat both patch clustering result and unobservable data as latent variables and solve the inference problem via variational EM algorithms. A weighted averaging strategy of fusing diverse inference results from overlapped patches is also developed. The effectiveness of patch-based video models is demonstrated by extensive experimental results on a wide range of video materials.

[1]  Yao Wang,et al.  Error control and concealment for video communication: a review , 1998, Proc. IEEE.

[2]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.

[3]  A. Netravali,et al.  Time-recursive deinterlacing for IDTV and pyramid coding , 1990, IEEE International Symposium on Circuits and Systems.

[4]  Geoffrey E. Hinton,et al.  Adaptive Mixtures of Local Experts , 1991, Neural Computation.

[5]  Dimitris Anastassiou,et al.  Digitally assisted deinterlacing for, EDTV , 1993, IEEE Trans. Circuits Syst. Video Technol..

[6]  Eero P. Simoncelli Distributed representation and analysis of visual motion , 1993 .

[7]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[8]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[9]  Michael T. Orchard,et al.  Overlapped block motion compensation: an estimation-theoretic approach , 1994, IEEE Trans. Image Process..

[10]  Ness B. Shroff,et al.  Error concealment techniques for encoded video streams , 1995, Proceedings., International Conference on Image Processing.

[11]  A. Murat Tekalp,et al.  Digital Video Processing , 1995 .

[12]  S. Aign,et al.  Temporal and spatial error concealment techniques for hierarchical MPEG-2 video codec , 1995, Proceedings IEEE International Conference on Communications ICC '95.

[13]  Edward H. Adelson,et al.  Noise removal via Bayesian wavelet coring , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[14]  Martin Szummer,et al.  Temporal texture modeling , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[15]  Jelena Kovacevic,et al.  Deinterlacing by successive approximation , 1997, IEEE Trans. Image Process..

[16]  Sameer A. Nene,et al.  A simple algorithm for nearest neighbor search in high dimensions , 1997 .

[17]  Nanda Kambhatla,et al.  Dimension Reduction by Local Principal Component Analysis , 1997, Neural Computation.

[18]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[19]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[20]  Erwin B. Bellers,et al.  Deinterlacing-an overview , 1998, Proc. IEEE.

[21]  S. Mallat A wavelet tour of signal processing , 1998 .

[22]  Narendra Ahuja,et al.  Video denoising by combining Kalman and Wiener estimates , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[23]  Adrian E. Raftery,et al.  Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .

[24]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[25]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[26]  William T. Freeman,et al.  Learning low-level vision , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[27]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing, 2nd Edition , 1999 .

[28]  Martin Vetterli,et al.  Adaptive wavelet thresholding for image denoising and compression , 2000, IEEE Trans. Image Process..

[29]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[30]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[31]  M. L. Liou,et al.  Reliable motion detection/compensation for interlaced sequences and its applications to deinterlacing , 2000, IEEE Trans. Circuits Syst. Video Technol..

[32]  Michael T. Orchard,et al.  Spatially adaptive image denoising under overcomplete expansion , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[33]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[34]  D. Madigan,et al.  Correction to: ``Bayesian model averaging: a tutorial'' [Statist. Sci. 14 (1999), no. 4, 382--417; MR 2001a:62033] , 2000 .

[35]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[36]  Guillermo Sapiro,et al.  Navier-stokes, fluid dynamics, and image and video inpainting , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[37]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[38]  Ivan W. Selesnick,et al.  Video denoising using 2D and 3D dual-tree complex wavelet transforms , 2003, SPIE Optics + Photonics.

[39]  Tai Sing Lee,et al.  Hierarchical Bayesian inference in the visual cortex. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[40]  Brendan J. Frey,et al.  Epitomic analysis of appearance and shape , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[41]  Jani Lainema,et al.  Adaptive deblocking filter , 2003, IEEE Trans. Circuits Syst. Video Technol..

[42]  Martin J. Wainwright,et al.  Image denoising using scale mixtures of Gaussians in the wavelet domain , 2003, IEEE Trans. Image Process..

[43]  Seungjoon Yang,et al.  Motion compensation assisted motion adaptive interlaced-to-progressive conversion , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[44]  Kwanghoon Sohn,et al.  Deinterlacing using directional interpolation and motion compensation , 2003, IEEE Trans. Consumer Electron..

[45]  Eero P. Simoncelli,et al.  On Advances in Statistical Modeling of Natural Images , 2004, Journal of Mathematical Imaging and Vision.

[46]  Richard E. Blahut,et al.  Theory of Remote Image Formation , 2004 .

[47]  Wenyi Zhao Motion-based spatial-temporal image repairing , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[48]  Patrick Pérez,et al.  Region filling and object removal by exemplar-based image inpainting , 2004, IEEE Transactions on Image Processing.

[49]  Mads Nielsen,et al.  A Variational Algorithm For Motion Compensated Inpainting , 2004, BMVC.

[50]  Eli Shechtman,et al.  Space-time video completion , 2004, CVPR 2004.

[51]  Vladimir Zlokolica,et al.  Motion- and detail-adaptive denoising of video , 2004, IS&T/SPIE Electronic Imaging.

[52]  Guillermo Sapiro,et al.  Fast image and video denoising via nonlocal means of similar neighborhoods , 2005, IEEE Signal Processing Letters.

[53]  Christopher Rasmussen,et al.  Spatiotemporal inpainting for recovering texture maps of partially occluded building facades , 2005, IEEE International Conference on Image Processing 2005.

[54]  Michael J. Black,et al.  Fields of Experts: a framework for learning image priors , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[55]  Brendan J. Frey,et al.  Video Epitomes , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[56]  Liang-Gee Chen,et al.  Video de-interlacing by adaptive 4-field global/local motion compensated approach , 2005, IEEE Transactions on Circuits and Systems for Video Technology.

[57]  Demin Wang,et al.  Hybrid de-interlacing algorithm based on motion vector reliability , 2005, IEEE Transactions on Circuits and Systems for Video Technology.

[58]  Jean-Michel Morel,et al.  Denoising image sequences does not require motion estimation , 2005, IEEE Conference on Advanced Video and Signal Based Surveillance, 2005..

[59]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[60]  Karen O. Egiazarian,et al.  Video Denoising Algorithm in Sliding 3D DCT Domain , 2005, ACIVS.

[61]  S. Shankar Sastry,et al.  Generalized principal component analysis (GPCA) , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[62]  Charles Kervrann,et al.  Unsupervised Patch-Based Image Regularization and Representation , 2006, ECCV.

[63]  Thomas W. Parks,et al.  Image denoising using total least squares , 2006, IEEE Transactions on Image Processing.

[64]  Michael J. Black,et al.  Denoising Archival Films using a Learned Bayesian Model , 2006, 2006 International Conference on Image Processing.

[65]  Onur G. Guleryuz,et al.  Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part I: theory , 2006, IEEE Transactions on Image Processing.

[66]  Kun Huang,et al.  Multiscale Hybrid Linear Models for Lossy Image Representation , 2006, IEEE Transactions on Image Processing.

[67]  Onur G. Guleryuz,et al.  Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part II: adaptive algorithms , 2006, IEEE Transactions on Image Processing.

[68]  Suyash P. Awate,et al.  Unsupervised, information-theoretic, adaptive image filtering for image restoration , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[69]  Yuan F. Zheng,et al.  Combined spatial and temporal domain wavelet shrinkage algorithm for video denoising , 2006, IEEE Transactions on Circuits and Systems for Video Technology.

[70]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[71]  Aleksandra Pizurica,et al.  Wavelet-Domain Video Denoising Based on Reliability Measures , 2006, IEEE Transactions on Circuits and Systems for Video Technology.

[72]  Xin Li,et al.  Video Processing Via Implicit and Mixture Motion Models , 2007, IEEE Transactions on Circuits and Systems for Video Technology.

[73]  H. Robbins A Stochastic Approximation Method , 1951 .

[74]  Oscar C. Au,et al.  Temporal Video Denoising Based on Multihypothesis Motion Compensation , 2007, IEEE Transactions on Circuits and Systems for Video Technology.

[75]  Alessandro Foi,et al.  Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering , 2007, IEEE Transactions on Image Processing.

[76]  Guillermo Sapiro,et al.  Video Inpainting Under Constrained Camera Motion , 2007, IEEE Transactions on Image Processing.

[77]  Marcelo Bertalmío,et al.  Movie Denoising by Average of Warped Lines , 2007, IEEE Transactions on Image Processing.

[78]  Karen O. Egiazarian,et al.  Pointwise Shape-Adaptive DCT for High-Quality Denoising and Deblocking of Grayscale and Color Images , 2007, IEEE Transactions on Image Processing.

[79]  Gabriel Peyré,et al.  Non-negative Sparse Modeling of Textures , 2007, SSVM.

[80]  Onur G. Guleryuz,et al.  Weighted Averaging for Denoising With Overcomplete Dictionaries , 2007, IEEE Transactions on Image Processing.

[81]  Patrick Bouthemy,et al.  Space-Time Adaptation for Patch-Based Image Sequence Restoration , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[82]  Pierrick Coupé,et al.  Bayesian Non-local Means Filter, Image Redundancy and Adaptive Dictionaries for Noise Removal , 2007, SSVM.

[83]  Karen O. Egiazarian,et al.  Video denoising by sparse 3D transform-domain collaborative filtering , 2007, 2007 15th European Signal Processing Conference.

[84]  Marcelo Bertalmío,et al.  An Inpainting- Based Deinterlacing Method , 2007, IEEE Transactions on Image Processing.

[85]  Michael Elad,et al.  Learning Multiscale Sparse Representations for Image and Video Restoration , 2007, Multiscale Model. Simul..

[86]  Michael Elad,et al.  Image Sequence Denoising via Sparse and Redundant Representations , 2009, IEEE Transactions on Image Processing.

[87]  T. Banchoff,et al.  Differential Geometry of Curves and Surfaces , 2010 .

[88]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.