Nonlinear photonic waveguides for on‐chip optical pulse compression

All-optical signal processing on nonlinear photonic chips is a burgeoning field. These processes include light generation, optical regeneration and pulse metrology. Nonlinear photonic chips offer the benefits of small footprints, significantly larger nonlinear parameters and flexibility in generating dispersion. The nonlinear compression of optical pulses relies on a delicate balance of a material's nonlinearity and optical dispersion. Recent developments in dispersion engineering on a chip are proving to be key enablers of high-efficiency integrated optical pulse compression. We review the recent advances made in optical pulse compression based on nonlinear photonic chips, as well as the future outlook and challenges that remain to be solved.

[1]  F. Ouellette Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides. , 1987, Optics letters.

[2]  B. Eggleton,et al.  Efficient optical pulse compression using chalcogenide single-mode fibers , 2006 .

[3]  R. Morandotti,et al.  New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics , 2013, Nature Photonics.

[4]  B. Eggleton,et al.  Nonlinear silicon photonics analyzed with the moment method , 2014, 1410.0421.

[5]  Bill Corcoran,et al.  Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides. , 2009, Optics express.

[6]  Dimitre Ouzounov,et al.  Soliton pulse compression in photonic band-gap fibers. , 2005, Optics express.

[7]  Bill Corcoran,et al.  Ultracompact 160 Gbaud all-optical demultiplexing exploiting slow light in an engineered silicon photonic crystal waveguide. , 2011, Optics letters.

[8]  A. M. van der Zande,et al.  Regenerative oscillation and four-wave mixing in graphene optoelectronics , 2012, Conference on Lasers and Electro-Optics.

[9]  Y. Vlasov,et al.  Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides. , 2006, Optics express.

[10]  Wolfgang Freude,et al.  Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries. , 2009, Optics express.

[11]  Jeff F. Young,et al.  Nonlinear transmission of 1.5 microm pulses through single-mode silicon-on-insulator waveguide structures. , 2004, Optics express.

[12]  G. Agrawal,et al.  Impact of two-photon absorption on self-phase modulation in silicon waveguides. , 2007, Optics letters.

[13]  M. Lipson,et al.  High quality factor and high confinement silicon resonators using etchless process , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[14]  Charles V. Shank,et al.  Compression of optical pulses chirped by self-phase modulation in fibers , 1984 .

[15]  W. Wadsworth,et al.  Delivery of sub-100fs pulses through 8m of hollow-core fiber using soliton compression. , 2007, Optics express.

[16]  Keiji Tanaka,et al.  Nonlinear Optical Properties of Hydrogenated Amorphous Si Films Probed by a Novel Z-Scan Technique , 2006 .

[17]  S. Mikhailov,et al.  Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  Robert W Boyd,et al.  Optical solitons in a silicon waveguide. , 2007, Optics express.

[19]  Sylvain Combrié,et al.  High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption , 2009 .

[20]  R. Stolen,et al.  Self-phase modulation and optical pulse compression influenced by stimulated Raman scattering in fibers , 1988 .

[21]  Mario J. Paniccia,et al.  Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide , 2004 .

[22]  A. E. Willner,et al.  On-Chip Octave-Spanning Supercontinuum in Nanostructured Silicon Waveguides Using Ultralow Pulse Energy , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[23]  I. Bennion,et al.  The compression of optical pulses using self-phase-modulation and linearly chirped Bragg-gratings in fibers , 1995, IEEE Photonics Technology Letters.

[24]  Xiaogang Chen,et al.  Self-phase-modulation in submicron silicon-on-insulator photonic wires. , 2006, Optics express.

[25]  G. Eisenstein,et al.  Highly efficient four wave mixing in InGaP photonic crystal waveguides , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[26]  D. Moss,et al.  Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides , 2009 .

[27]  Dawn T. H. Tan,et al.  Optical pulse compression on a silicon chip—Effect of group velocity dispersion and free carriers , 2012 .

[28]  Rick Trebino,et al.  Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires. , 2005, Optics express.

[29]  Nicolas Godbout,et al.  Large nonlinear Kerr effect in graphene , 2012, 1203.5527.

[30]  D. Tan,et al.  Ultra-large nonlinear parameter in graphene-silicon waveguide structures. , 2014, Optics express.

[31]  J C Knight,et al.  Time and frequency domain measurements of solitons in subwavelength silicon waveguides using a cross-correlation technique. , 2010, Optics express.

[32]  Yeshaiahu Fainman,et al.  Monolithic nonlinear pulse compressor on a silicon chip. , 2010, Nature communications.

[33]  Michal Lipson,et al.  Ultrafast waveform compression using a time-domain telescope , 2009 .

[34]  A Säynätjoki,et al.  Dispersion engineering of photonic crystal waveguides with ring-shaped holes. , 2007, Optics express.

[35]  J. Li,et al.  Observation of soliton compression in silicon photonic crystals , 2014, Nature Communications.

[36]  Kazuhiro Ikeda,et al.  Enhanced optical nonlinearity in amorphous silicon and its application to waveguide devices. , 2007, Optics express.

[37]  Nicolas Godbout,et al.  Z-scan measurement of the nonlinear refractive index of graphene. , 2012, Optics letters.

[38]  Agrawal,et al.  Temporal and spectral effects of cross-phase modulation on copropagating ultrashort pulses in optical fibers. , 1989, Physical review. A, General physics.

[39]  Toshihiko Baba,et al.  Slow light in photonic crystals , 2008 .

[40]  K. Kondo,et al.  Ultrafast slow-light tuning beyond the carrier lifetime using photonic crystal waveguides. , 2013, Physical review letters.

[41]  Keijiro Suzuki,et al.  Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides. , 2010, Optics express.

[42]  Kazuhiro Ikeda,et al.  Coupled chirped vertical gratings for on-chip group velocity dispersion engineering , 2009 .

[43]  T. Krauss,et al.  Observation of pulse compression in photonic Crystal coupled cavity waveguides , 2004, Journal of Lightwave Technology.

[44]  Sylvain Combrié,et al.  Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide. , 2009, Optics express.

[45]  C. Someda,et al.  Theory of slow light enhanced four-wave mixing in photonic crystal waveguides. , 2010, Optics express.

[46]  Roberto Morandotti,et al.  CMOS-compatible integrated optical hyper-parametric oscillator , 2010 .

[47]  Y Fainman,et al.  Chip-scale dispersion engineering using chirped vertical gratings. , 2008, Optics letters.

[48]  I. Sagnes,et al.  Observation of soliton pulse compression in photonic crystal waveguides , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[49]  N. Suzuki,et al.  FDTD Analysis of Two-Photon Absorption and Free-Carrier Absorption in Si High-Index-Contrast Waveguides , 2007, Journal of Lightwave Technology.

[50]  H. Tsang,et al.  Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides , 2004 .

[51]  R. C. Miller OPTICAL SECOND HARMONIC GENERATION IN PIEZOELECTRIC CRYSTALS , 1964 .

[52]  B. Jaskorzyńska,et al.  All-fiber distributed compression of weak pulses in the regime of negative group-velocity dispersion , 1988 .

[53]  Bahram Jalali,et al.  Demonstration of a silicon Raman laser. , 2004, Optics express.

[54]  Waveguide engineering of graphene's nonlinearity , 2014, 1411.4736.

[55]  Roberto Morandotti,et al.  Subpicosecond optical pulse compression via an integrated nonlinear chirper. , 2010, Optics express.

[56]  Kazuhiro Ikeda,et al.  Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides. , 2008, Optics express.

[57]  Kiyoshi Asakawa,et al.  Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line-defect. , 2009, Optics express.

[58]  Roberto Righini,et al.  Structural relaxation in supercooled water by time-resolved spectroscopy , 2004, Nature.

[59]  Sylvain Combrié,et al.  Effect of multiphoton absorption and free carriers in slow-light photonic crystal waveguides. , 2011, Optics letters.

[60]  Alexander Fang,et al.  An all-silicon Raman laser , 2005, Nature.

[61]  J R Taylor,et al.  Optical pulse compression in dispersion decreasing photonic crystal fiber. , 2007, Optics express.

[62]  Dim-Lee Kwong,et al.  Observation of four-wave mixing in slow-light silicon photonic crystal waveguides. , 2010, Optics express.

[63]  D. Richardson,et al.  Soliton pulse compression in dispersion-decreasing fiber. , 1993, Optics letters.

[64]  Reza Salem,et al.  Silicon-chip-based ultrafast optical oscilloscope , 2008, Nature.

[65]  C K Madsen,et al.  Multistage dispersion compensator using ring resonators. , 1999, Optics letters.

[66]  G. Agrawal,et al.  Nonlinear optical phenomena in silicon waveguides: modeling and applications. , 2007, Optics express.

[67]  J. Azaña,et al.  Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings , 2000, IEEE Journal of Quantum Electronics.

[68]  C Monat,et al.  Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration. , 2009, Optics express.

[69]  P. Colman,et al.  Control of dispersion in photonic crystal waveguides using group symmetry theory. , 2012, Optics express.

[70]  K. Zhao,et al.  The generation, characterization and applications of broadband isolated attosecond pulses , 2014, Nature Photonics.

[71]  Jurgen Michel,et al.  Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared , 2014 .

[72]  Ting Wang,et al.  Multi-photon absorption and third-order nonlinearity in silicon at mid-infrared wavelengths. , 2013, Optics express.

[73]  Toshihiko Baba,et al.  Temporal pulse compression by dynamic slow-light tuning in photonic-crystal waveguides , 2015 .

[74]  Yasuhiko Arakawa,et al.  Nonlinear-Optic Silicon-Nanowire Waveguides , 2005 .

[75]  Michael Galili,et al.  Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel. , 2010, Optics express.

[76]  Xiang Zhang,et al.  A graphene-based broadband optical modulator , 2011, Nature.

[77]  D. Moss,et al.  Third harmonic generation as a structural diagnostic of ion‐implanted amorphous and crystalline silicon , 1986 .

[78]  Rüdiger Paschotta,et al.  Pulse compression with supercontinuum generation in microstructure fibers , 2005 .

[79]  M. Notomi,et al.  Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. , 2001, Physical review letters.

[80]  D J Richardson,et al.  Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber. , 2003, Optics letters.

[81]  Michal Lipson,et al.  CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects , 2010 .

[82]  Hai-feng Liu,et al.  Higher order soliton pulse compression in dispersion-decreasing optical fibers , 1997 .

[83]  Kazuhiro Ikeda,et al.  Group velocity dispersion and self phase modulation in silicon nitride waveguides , 2010 .

[84]  F. Diederich,et al.  All-optical high-speed signal processing with silicon–organic hybrid slot waveguides , 2009 .

[85]  E. Treacy Optical pulse compression with diffraction gratings , 1969 .

[86]  I. Day,et al.  Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength , 2002 .

[87]  J. Sipe,et al.  Optical pulse propagation in nonlinear photonic crystals. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[88]  O. Schwelb,et al.  Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters-a tutorial overview , 2004, Journal of Lightwave Technology.

[89]  Yurii A. Vlasov,et al.  Supercontinuum generation in silicon photonic wires , 2007 .

[90]  G. F. R. Chen,et al.  Second and third order dispersion generation using nonlinearly chirped silicon waveguide gratings. , 2013, Optics express.

[91]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[92]  Yi Yu,et al.  A broadband, quasi‐continuous, mid‐infrared supercontinuum generated in a chalcogenide glass waveguide , 2014 .

[93]  Ronald Dekker,et al.  Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides , 2007 .

[94]  Benjamin J Eggleton,et al.  Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires. , 2008, Optics letters.

[95]  S. Mikhailov,et al.  New electromagnetic mode in graphene. , 2007, Physical review letters.

[96]  Gail McConnell,et al.  Ultra-short pulse compression using photonic crystal fibre , 2004 .

[97]  J Moger,et al.  Coherent nonlinear optical response of graphene. , 2010, Physical review letters.

[98]  H. Hamann,et al.  Active control of slow light on a chip with photonic crystal waveguides , 2005, Nature.

[99]  James P. Gordon,et al.  Experimental observation of picosecond pulse narrowing and solitons in optical fibers (A) , 1980 .

[100]  M. Lipson,et al.  Tailored anomalous group-velocity dispersion in silicon channel waveguides. , 2006, Optics express.

[101]  J. Fujimoto,et al.  In vivo ultrahigh-resolution optical coherence tomography. , 1999, Optics letters.