Gate-controlled semimetal-topological insulator transition in an InAs/GaSb heterostructure

We report a gate-controlled transition of a semimetallic InAs/GaSb heterostructure to a topological insulator. The transition is induced by decreasing the degree of band inversion with front and back gate voltages. Temperature dependence of the longitudinal resistance peak shows the energy gap opening in the bulk region with increasing gate electric field. The suppression of bulk conduction and the transition to a topological insulator are confirmed by nonlocal resistance measurements using a dual lock-in technique, which allows us to rigorously compare the voltage distribution in the sample for different current paths without the influence of time-dependent resistance fluctuations.