Locating an axis-parallel rectangle on a Manhattan plane

In this paper we consider the problem of locating an axis-parallel rectangle in the plane such that the sum of distances between the rectangle and a finite point set is minimized, where the distance is measured by the Manhattan norm ℓ1. In this way we solve an extension of the Weber problem to extensive facility location. As a model, our problem is appropriate for position sensing of rectangular objects.

[1]  A. Schöbel Locating lines and hyperplanes : theory and algorithms , 1999 .

[2]  János Pach New Trends in Discrete and Computational Geometry , 2013 .

[3]  Jack Brimberg,et al.  Locating a minisum circle in the plane , 2009, Discret. Appl. Math..

[4]  Anita Schöbel,et al.  Anchored Hyperplane Location Problems , 2003, Discret. Comput. Geom..

[5]  George O. Wesolowsky,et al.  Note: Facility location with closest rectangular distances , 2000 .

[6]  Horst Martini,et al.  Median and center hyperplanes in Minkowski spaces--a unified approach , 2001, Discret. Math..

[7]  Refael Hassin,et al.  Improved complexity bounds for location problems on the real line , 1991, Oper. Res. Lett..

[8]  José Miguel Díaz-Báñez,et al.  Continuous location of dimensional structures , 2004, Eur. J. Oper. Res..

[9]  Jack Brimberg,et al.  Properties of Three-Dimensional Median Line Location Models , 2003, Ann. Oper. Res..

[10]  F. Plastria,et al.  Gauge Distances and Median Hyperplanes , 2001 .

[11]  Marshall W. Bern,et al.  Paper position sensing , 2002, SCG '02.

[12]  G. O. Wesolowsky Location of the Median Line for Weighted Points , 1975 .

[13]  H. Martini,et al.  Hyperplane Approximation and Related Topics , 1993 .

[14]  Horst W. Hamacher,et al.  An optimal O(nlogn) algorithm for finding an enclosing planar rectilinear annulus of minimum width , 2009, Oper. Res. Lett..

[15]  H. Martini,et al.  Two Characterizations of Smooth Norms , 1999 .

[16]  Zvi Drezner,et al.  The Weber Problem , 2002 .

[17]  A. Schöbel,et al.  Properties of 3-dimensional line location models , 2002 .

[18]  Jack Brimberg,et al.  Locating a Circle on a Sphere , 2007, Oper. Res..

[19]  Jack Brimberg,et al.  Geometric fit of a point set by generalized circles , 2011, J. Glob. Optim..

[20]  Zvi Drezner,et al.  On the circle closest to a set of points , 2002, Comput. Oper. Res..

[21]  Zvi Drezner,et al.  Facility location - applications and theory , 2001 .

[22]  Daniel Scholz,et al.  The big cube small cube solution method for multidimensional facility location problems , 2010, Comput. Oper. Res..

[23]  Horst Martini,et al.  Median Hyperplanes in Normed Spaces - A Survey , 1998, Discret. Appl. Math..

[24]  Dinesh Manocha,et al.  Object localization using crossbeam sensing , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[25]  Jack Brimberg,et al.  Locating a general minisum ‘circle’ on the plane , 2011, 4OR.

[26]  F. L. Bauer,et al.  Absolute and monotonic norms , 1961 .

[27]  Horst Martini,et al.  Approximating Finite Weighted Point Sets by Hyperplanes , 1990, SWAT.

[28]  Jack Brimberg,et al.  Linear Facility Location in Three Dimensions - Models and Solution Methods , 2002, Oper. Res..

[29]  George O. Wesolowsky,et al.  Minisum Location with Closest Euclidean Distances , 2002, Ann. Oper. Res..

[30]  Jack Brimberg,et al.  General minisum circle location , 2009, CCCG.