Spectral estimation of irregularly sampled multidimensional processes by generalized prolate spheroidal sequences
暂无分享,去创建一个
[1] Thomas P. Bronez. Approximation Of Eigenvector Weights For ISAR Imaging , 1988, Optics & Photonics.
[2] S.M. Kay,et al. Spectrum analysis—A modern perspective , 1981, Proceedings of the IEEE.
[3] J.H. McClellan,et al. Multidimensional spectral estimation , 1982, Proceedings of the IEEE.
[4] A. Ishimaru,et al. Thinning and broadbanding antenna arrays by unequal spacings , 1965 .
[5] E. Robinson,et al. A historical perspective of spectrum estimation , 1982, Proceedings of the IEEE.
[6] Roy L. Streit. Optimization of discrete arrays of arbitrary geometry , 1981 .
[7] Alessandro Neri,et al. Methods for estimating the autocorrelation function of complex Gaussian stationary processes , 1987, IEEE Trans. Acoust. Speech Signal Process..
[8] D. Munson,et al. A tomographic formulation of spotlight-mode synthetic aperture radar , 1983, Proceedings of the IEEE.
[9] P. Welch. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms , 1967 .
[10] J. Cadzow,et al. Spectral estimation: An overdetermined rational model equation approach , 1982, Proceedings of the IEEE.
[11] D. Thomson,et al. Spectrum estimation and harmonic analysis , 1982, Proceedings of the IEEE.
[12] D. Slepian. Prolate spheroidal wave functions, fourier analysis, and uncertainty — V: the discrete case , 1978, The Bell System Technical Journal.
[13] Michael Gaster,et al. Spectral Analysis of Randomly Sampled Signals , 1975 .