Random fixed points of random multivalued operators on polish spaces

[1]  M. Edelstein,et al.  An extension of Banach’s contraction principle , 1961 .

[2]  O. Hanš Random Operator Equations , 1961 .

[3]  Emmett B. Keeler,et al.  A theorem on contraction mappings , 1969 .

[4]  S. Nadler Multi-valued contraction mappings. , 1969 .

[5]  Shigeru Itoh A Random Fixed Point Theorem for a Multivalued Contraction Mapping , 1976 .

[6]  Daniel H. Wagner Survey of Measurable Selection Theorems , 1977 .

[7]  On best simultaneous approximation in normed linear spaces , 1977 .

[8]  Shigeru Itoh,et al.  Random fixed point theorems with an application to random differential equations in Banach spaces , 1979 .

[9]  Sehie Park,et al.  Extensions of a fixed point theorem of Meir and Keeler , 1981 .

[10]  C. J. Himmelberg,et al.  On measurable relations , 1982 .

[11]  V. Sehgal,et al.  On random approximations and a random fixed point theorem for set valued mappings , 1985 .

[12]  Nikolaos S. Papageorgiou Random fixed point theorems for measurable multifunctions in Banach spaces , 1986 .

[13]  S. Sessa,et al.  On Fixed Points of Asymptotically Regular Mappings , 1987, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[14]  G. Jungck,et al.  Common fixed points for commuting and compatible maps on compacta , 1988 .

[15]  Tzu-Chu Lin,et al.  Random approximations and random fixed point theorems for non-self-maps , 1988 .

[16]  Ismat Beg,et al.  Fixed points of asymptotically regular multivalued mappings , 1992, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.