Sweet Confinement: Glucose and Carbohydrate Osmolytes in Reverse Micelles.

The research presented here reports the surprising observation that adding glucose and other carbohydrate osmolytes to the polar phase of water-containing reverse micelles causes the particles to shrink. This apparent change in reverse micelle size is attributed to two factors: an increase in the surface area per surfactant molecule induced by the presence of carbohydrate and changes in the particle shape eccentricity. The studies reported here not only focus on glucose but also explore other carbohydrate osmolytes, specifically ethylene glycol, glycerol, erythritol, xylitol, sorbitol, myo-inositol, and trehalose, in the nanoconfined environments of reverse micelles. Through two-dimensional proton nuclear Overhauser enhancement nuclear magnetic resonance spectroscopy, the osmolytes were determined to reside solvated in the aqueous interior of the reverse micelles. This paper reports the loading limit of carbohydrates into AOT [sodium bis(2-ethylhexyl)sulfosuccinate] reverse micelles, demonstrates the location of the carbohydrates in the reverse micelles, and shows an unexpected effect where the carbohydrates add to the reverse micelle volume without causing an apparent increase in the reverse micelle diameter.

[1]  Jennifer K. Hensel,et al.  Molecular characterization of water and surfactant AOT at nanoemulsion surfaces , 2017, Proceedings of the National Academy of Sciences.

[2]  M. Maebayashi,et al.  Anomeric proportions of d -glucopyranose at the equilibrium determined from 1 H-NMR spectra I. Investigation of experimental conditions and concentration dependence at 25.0 °C , 2017 .

[3]  M. Guettari,et al.  Determination of the Water/AOT/Isooctane Reverse Micelles Size Parameters from Their Refractive Index Data , 2017, Journal of Solution Chemistry.

[4]  J. DiVerdi,et al.  Nanoconfinement's Dramatic Impact on Proton Exchange between Glucose and Water. , 2016, The journal of physical chemistry letters.

[5]  P. Axelsen,et al.  The Size of AOT Reverse Micelles. , 2016, Journal of Physical Chemistry B.

[6]  Suman Chakrabarty,et al.  Exploration of the presence of bulk-like water in AOT reverse micelles and water-in-oil nanodroplets: the role of charged interfaces, confinement size and properties of water. , 2016, Physical chemistry chemical physics : PCCP.

[7]  Sheetal,et al.  Densities and Speeds of Sound of d(+)-Glucose, d(−)-Fructose, d(+)-Xylose and d(−)-Ribose in Aqueous Tripotassium Citrate Solutions at Different Temperatures , 2016 .

[8]  C. Stoicescu,et al.  Partial molar volumes, isentropic compressibilities, and partial molar expansibilities of N-Methylglycine and d-Glucose in aqueous environments at temperatures between (298.15 and 323.15) K , 2016 .

[9]  M. Delbianco,et al.  Carbohydrates in Supramolecular Chemistry. , 2016, Chemical reviews.

[10]  Moirangthem Kiran Singh,et al.  Measuring Size, Size Distribution, and Polydispersity of Water-in-Oil Microemulsion Droplets using Fluorescence Correlation Spectroscopy: Comparison to Dynamic Light Scattering. , 2016, The journal of physical chemistry. B.

[11]  P. McMillan,et al.  Water Dynamics in Shewanella oneidensis at Ambient and High Pressure using Quasi-Elastic Neutron Scattering , 2016, Scientific Reports.

[12]  Timothy Gallagher,et al.  Carbohydrate–Aromatic Interactions in Proteins , 2015, Journal of the American Chemical Society.

[13]  S. Markaryan,et al.  Effect of the dioctyl sodium sulfosuccinate (AOT) concentration on the properties of the AOT-n-heptane-DMSO-water micellar system , 2015, Russian Journal of Physical Chemistry A.

[14]  D. Lohse,et al.  Surface nanobubbles and nanodroplets , 2015 .

[15]  T. Darwish,et al.  Direct Comparison of Disaccharide Interaction with Lipid Membranes at Reduced Hydrations. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[16]  J. Bartlett,et al.  Synthesis of sol–gel silica particles in reverse micelles with mixed-solvent polar cores: tailoring nanoreactor structure and properties , 2015, Journal of Nanoparticle Research.

[17]  Banibrata Maity,et al.  Photophysics of crystal violet lactone in reverse micelles and its dual behaviour , 2015 .

[18]  D. Mandal,et al.  Photoisomerization and reorientational dynamics of DTDCI in AOT/alkane reverse micelles containing non-aqueous polar liquids , 2015, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[19]  M. Marchi,et al.  Modeling the Self-Aggregation of Small AOT Reverse Micelles from First-Principles. , 2015, The journal of physical chemistry letters.

[20]  P. Pradhan,et al.  Investigation of influence of nonionic additives on structural changes of water droplets encapsulated in AOT reverse micelles by instrumental methods , 2014 .

[21]  Linjie Jiang,et al.  Solubility of Trehalose in Water + Ethanol Solvent System from (288.15 to 318.15) K , 2014 .

[22]  S. Markarian,et al.  Volume properties of reverse micellar systems AOT/n-heptane/DMSO-water , 2014, Russian Journal of Physical Chemistry A.

[23]  L. Broadbelt,et al.  Sodium ion interactions with aqueous glucose: insights from quantum mechanics, molecular dynamics, and experiment. , 2013, The journal of physical chemistry. B.

[24]  V. Razumov,et al.  What makes AOT reverse micelles spherical? , 2014, Colloid and Polymer Science.

[25]  Natali Francesca,et al.  Water Dynamics in Neural Tissue , 2013 .

[26]  C. Sandström,et al.  NMR Study on the Interaction of Trehalose with Lactose and Its Effect on the Hydrogen Bond Interaction in Lactose , 2013, Molecules.

[27]  J. Straub,et al.  Probing the structure and dynamics of confined water in AOT reverse micelles. , 2013, The journal of physical chemistry. B.

[28]  J. Jiménez-Barbero,et al.  Carbohydrate-aromatic interactions. , 2013, Accounts of chemical research.

[29]  Geert-Jan Witkamp,et al.  Natural deep eutectic solvents as new potential media for green technology. , 2013, Analytica chimica acta.

[30]  R. Podgornik,et al.  Statistical analysis of sizes and shapes of virus capsids and their resulting elastic properties , 2012, Journal of biological physics.

[31]  C. Rithner,et al.  Correlating proton transfer dynamics to probe location in confined environments. , 2012, Journal of the American Chemical Society.

[32]  N. M. Correa,et al.  Nonaqueous polar solvents in reverse micelle systems. , 2012, Chemical reviews.

[33]  Yonghong Hu,et al.  Solubility of erythritol in different aqueous solvent mixtures , 2012 .

[34]  Ken A. Dill,et al.  Molecular driving forces : statistical thermodynamics in biology, chemistry, physics, and nanoscience , 2012 .

[35]  Ruixue Zhu,et al.  Photophysics and locations of IR125 and C152 in AOT reverse micelles. , 2011, Physical chemistry chemical physics : PCCP.

[36]  Nibedita Pal,et al.  Fluorescence correlation spectroscopy: an efficient tool for measuring size, size-distribution and polydispersity of microemulsion droplets in solution. , 2011, Analytical chemistry.

[37]  N. M. Correa,et al.  A new organized media: glycerol:N,N-dimethylformamide mixtures/AOT/n-heptane reversed micelles. The effect of confinement on preferential solvation. , 2011, The journal of physical chemistry. B.

[38]  Lise Arleth,et al.  Reconciliation of opposing views on membrane–sugar interactions , 2011, Proceedings of the National Academy of Sciences.

[39]  A. Wand,et al.  Site-Resolved Measurement of Water-Protein Interactions by Solution NMR , 2010, Nature Structural &Molecular Biology.

[40]  M. Fayer,et al.  Analysis of water in confined geometries and at interfaces. , 2010, Annual review of analytical chemistry.

[41]  D. Topgaard,et al.  Determination of the self-diffusion coefficient of intracellular water using PGSE NMR with variable gradient pulse length. , 2009, Journal of magnetic resonance.

[42]  B. Ladanyi,et al.  Molecular dynamics simulation of aerosol-OT reverse micelles. , 2009, The journal of physical chemistry. B.

[43]  N. M. Correa,et al.  Effect of the constrained environment on the interactions between the surfactant and different polar solvents encapsulated within AOT reverse micelles. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[44]  Sheng-Kai Xing,et al.  Densities and apparent molar volumes of myo-inositol in aqueous solutions of alkaline earth metal salts at different temperatures , 2009 .

[45]  Laura A. Swafford,et al.  Ultrafast dynamics in reverse micelles. , 2009, Annual review of physical chemistry.

[46]  I. Roy,et al.  Effect of trehalose on protein structure , 2008, Protein science : a publication of the Protein Society.

[47]  C. Rithner,et al.  Penetration of negatively charged lipid interfaces by the doubly deprotonated dipicolinate. , 2008, The Journal of organic chemistry.

[48]  V. Razumov,et al.  Growth kinetics for AgI nanoparticles in AOT reverse micelles: effect of molecular length of hydrocarbon solvents. , 2008, Journal of colloid and interface science.

[49]  G. Longhi,et al.  Confinement of chiral molecules in reverse micelles: FT-IR, polarimetric and VCD investigation on the state of dimethyl tartrate in sodium bis(2-ethylhexyl) sulfosuccinate reverse micelles dispersed in carbon tetrachloride , 2008 .

[50]  Laura A. Swafford,et al.  Do probe molecules influence water in confinement? , 2008, The journal of physical chemistry. B.

[51]  M. Tehei,et al.  Down to atomic‐scale intracellular water dynamics , 2008 .

[52]  R. Sjöholm,et al.  Complete assignments of the (1)H and (13)C chemical shifts and J(H,H) coupling constants in NMR spectra of D-glucopyranose and all D-glucopyranosyl-D-glucopyranosides. , 2008, Carbohydrate research.

[53]  S. Sharma,et al.  Effect of Sodium Sulphate on the Volumetric, Rheological and Refractometric Properties of some Disaccharides in Aqueous Solutions at Different Temperatures , 2008 .

[54]  M. Giulietti,et al.  Solubility of D-glucose in water and ethanol/water mixtures , 2007 .

[55]  Trushar R. Patel,et al.  Weak self-association in a carbohydrate system. , 2007, Biophysical journal.

[56]  N. Levinger,et al.  Simple oxovanadates as multiparameter probes of reverse micelles. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[57]  E. Benson,et al.  Life in the Frozen State , 2007 .

[58]  E. Lissi,et al.  EFFECT OF THE ORGANIC SOLVENT ON THE INTERFACIAL MICROPOLARITY OF AOT -WATER REVERSE MICELLES , 2007 .

[59]  A. Fucaloro,et al.  Partial Molar Volumes and Refractions of Aqueous Solutions of Fructose, Glucose, Mannose, and Sucrose at 15.00, 20.00, and 25.00 °C , 2007 .

[60]  S. Magazù,et al.  Structural investigation of the confinement of finite amounts of trehalose in water-containing sodium Bis(2-ethylhexyl)sulfosuccinate reversed micelles. , 2006, The journal of physical chemistry. B.

[61]  N. M. Correa,et al.  When is water not water? Exploring water confined in large reverse micelles using a highly charged inorganic molecular probe. , 2006, Journal of the American Chemical Society.

[62]  M. Fayer,et al.  Testing the core/shell model of nanoconfined water in reverse micelles using linear and nonlinear IR spectroscopy. , 2006, The journal of physical chemistry. A.

[63]  Wade D. Van Horn,et al.  Dynamics of low temperature induced water shedding from AOT reverse micelles. , 2006, Journal of the American Chemical Society.

[64]  C. Rithner,et al.  Interaction of dipicolinatodioxovanadium(V) with polyatomic cations and surfaces in reverse micelles. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[65]  M. Marchi,et al.  Molecular Modeling and Simulations of AOT−Water Reverse Micelles in Isooctane: Structural and Dynamic Properties , 2004 .

[66]  E. Lissi,et al.  Effect of the addition of a nonaqueous polar solvent (glycerol) on enzymatic catalysis in reverse micelles. Hydrolysis of 2-naphthyl acetate by alpha-chymotrypsin. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[67]  Roberto D Lins,et al.  Interaction of the disaccharide trehalose with a phospholipid bilayer: a molecular dynamics study. , 2004, Biophysical journal.

[68]  G. Palazzo,et al.  Role of the Cosurfactant in the CTAB/Water/n-Pentanol/n-Hexane Water-in-Oil Microemulsion. 1. Pentanol Effect on the Microstructure† , 2003 .

[69]  C. Wyman,et al.  Sugar monomer and oligomer solubility , 2003, Applied biochemistry and biotechnology.

[70]  W. Bubb NMR spectroscopy in the study of carbohydrates: Characterizing the structural complexity , 2003 .

[71]  J. C. Ahluwalia,et al.  Partial molar heat capacities and volumes of transfer of some saccharides from water to aqueous sodium chloride solutions at T = 298.15 K , 2002 .

[72]  E. Lissi,et al.  Solubilization in AOT-water reverse micelles. Effect of the external solvent , 2002 .

[73]  H. Takeuchi,et al.  Estimation for size of reverse micelles formed by AOT and SDEHP based on viscosity measurement , 2002 .

[74]  M. Dubois,et al.  Swelling of a lecithin lamellar phase induced by small carbohydrate solutes. , 2002, Biophysical journal.

[75]  G. Bertolo,et al.  Osmotic pre-treatments in fruit processing: chemical, physical and structural effects , 2001 .

[76]  E. Reguera,et al.  Interaction of potassium fluoride with α-d-glucose , 2001 .

[77]  H. Bohidar,et al.  Characterization of reverse micelles by dynamic light scattering , 2001 .

[78]  Luzia P. Novaki,et al.  Solubilization of Pure and Aqueous 1,2,3-Propanetriol by Reverse Aggregates of Aerosol−OT in Isooctane Probed by FTIR and 1H NMR Spectroscopy , 2001 .

[79]  J. Wang,et al.  Volumetric properties for the monosaccharide (D-xylose, D-arabinose, D-glucose, D-galactose)-NaCl-water systems at 298.15 K. , 2000, Carbohydrate research.

[80]  T G Frey,et al.  The internal structure of mitochondria. , 2000, Trends in biochemical sciences.

[81]  N. M. Correa,et al.  FTIR and 1H NMR Studies of the Solubilization of Pure and Aqueous 1,2-Ethanediol in the Reverse Aggregates of Aerosol-OT , 2000 .

[82]  N. M. Correa,et al.  Properties of AOT Aqueous and Nonaqueous Microemulsions Sensed by Optical Molecular Probes , 2000 .

[83]  James R. Faeder,et al.  Molecular Dynamics Simulations of the Interior of Aqueous Reverse Micelles , 2000 .

[84]  Urbach,et al.  Adiabatic compressibility of AOT , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[85]  M. Hirai,et al.  Characteristics of AOT Microemulsion Structure Depending on Apolar Solvents , 1999 .

[86]  E. Lissi,et al.  INTERACTIONS OF SMALL MOLECULES WITH REVERSE MICELLES , 1999 .

[87]  N. Levinger,et al.  Novel Reverse Micelles Partitioning Nonaqueous Polar Solvents in a Hydrocarbon Continuous Phase , 1997 .

[88]  J. C. Ahluwalia,et al.  Partial molar heat capacities and volumes of some mono-, di- and tri-saccharides in water at 298.15, 308.15 and 318.15 K , 1997 .

[89]  E. Gulari,et al.  Ethylene Glycol and a Fatty Acid Have a Profound Impact on the Behavior of Water-in-Oil Microemulsions Formed by the Surfactant Aerosol-OT , 1995 .

[90]  A. Maitra,et al.  Solution behaviour of Aerosol OT in non-polar solvents , 1995 .

[91]  M. Almgren,et al.  Polydispersity of AOT droplets measured by time-resolved fluorescence quenching , 1993 .

[92]  R. Goldberg,et al.  Apparent molar heat capacities and apparent molar volumes of aqueous glucose at temperatures from 298.15 K to 327.01 K , 1993 .

[93]  A. D'aprano,et al.  Volumetric and transport properties of aerosol-OT reversed micelles containing light and heavy water , 1992 .

[94]  J. E. Gurst NMR and the structure of D-glucose , 1991 .

[95]  B. Halle,et al.  Shape Fluctuations and Water Diffusion in Microemulsion Droplets. A Nuclear Spin Relaxation Study , 1989 .

[96]  P. Luisi,et al.  Reverse micelles as hosts for proteins and small molecules. , 1988, Biochimica et biophysica acta.

[97]  D. Irish,et al.  The effect of cations on the anomeric equilibrium of d-glucose in aqueous solutions — a raman-spectral study , 1986 .

[98]  Sow-Hsin Chen,et al.  Structure of AOT reversed micelles determined by small-angle neutron scattering , 1985 .

[99]  J. Crowe,et al.  Interactions of phospholipid monolayers with carbohydrates. , 1984, Biochimica et biophysica acta.

[100]  M. Zulauf,et al.  Inverted micelles and microemulsions in the ternary system water/aerosol-OT/isooctane as studied by photon correlation spectroscopy , 1979 .

[101]  H. V. Bekkum,et al.  1H‐NMR study of the complex formation of alditols with multivalent cations in aqueous solution using praseodymium(III) nitrate as shift reagent , 1975 .

[102]  Samuel H. Yalkowsky,et al.  Solubility of nonelectrolytes in polar solvents. V. Estimation of the solubility of aliphatic monofunctional compounds in water using a molecular surface area approach , 1975 .