Water Gas Shift Catalysis

Developments in water gas shift (WGS) catalysis, especially during the last decade, are reviewed. Recent developments include the development of 1 chromium‐free catalysts that can operate at lower steam to gas ratios and 2 more active catalysts that can operate at gas hourly space velocities above 40,000 h−1. A current challenge is to develop catalysts for use in fuel cell applications. Precious metal catalysts supported on partially reducible oxide supports (Pt‐ceria, Pt‐titania, Au‐ceria, etc.) are the current front runners. A critical review of the mechanism of the WGS reaction is also presented.

[1]  M. Temkin The Kinetics of Some Industrial Heterogeneous Catalytic Reactions , 1980 .

[2]  Ana P.M.G. Barandas,et al.  Water-gas shift reaction over magnesia-modified Pt/CeO2 catalysts , 2007 .

[3]  M. Oba,et al.  The Zinc Oxide-Copper Catalyst for Carbon Monoxide-Shift Conversion. II. The Catalytic Activity and the Catalyst Structures , 1968 .

[4]  G. Bond,et al.  CO oxidation activity of gold catalysts supported on various oxides and their improvement by inclusion of an iron component , 2006 .

[5]  M. Mavrikakis,et al.  A Cu/Pt near-surface alloy for water-gas shift catalysis. , 2007, Journal of the American Chemical Society.

[6]  Erzeng Xue,et al.  Water-gas shift conversion using a feed with a low steam to carbon monoxide ratio and containing sulphur , 1996 .

[7]  T. P. Hilditch,et al.  The fourth report of the committee on contact catalysis , 1926 .

[8]  K. Wilson,et al.  In-situ XPS Study on the Reducibility of Pd-Promoted Cu/CeO2 Catalysts for the Oxygen-assisted Water-gas-shift Reaction , 2008 .

[9]  M. C. Rangel,et al.  An environmental friendly dopant for the high-temperature shift catalysts , 2000 .

[10]  C. Rhodes,et al.  Microstructural studies of the copper promoted iron oxide/chromia water-gas shift catalyst , 2002 .

[11]  Keisuke Terada,et al.  Marked addition effect of Re upon the water gas shift reaction over TiO2 supported Pt, Pd and Ir catalysts , 2006 .

[12]  Hiroyuki Tominaga,et al.  Density functional theory of water-gas shift reaction on molybdenum carbide. , 2005, The journal of physical chemistry. B.

[13]  C. Kubiak,et al.  In the Water Gas Shift Reaction , 2007 .

[14]  M. S. Hegde,et al.  Enhanced Reducibility of Ce1-xTixO2 Compared to That of CeO2 and Higher Redox Catalytic Activity of Ce1-x-yTixPtyO2-δ Compared to That of Ce1-xPtxO2-δ , 2006 .

[15]  G. Chinchen,et al.  Water-gas shift reaction over an iron oxide/chromium oxide catalyst. , 1984 .

[16]  M. Daturi,et al.  Metal dispersion of CeO2–ZrO2 supported platinum catalysts measured by H2 or CO chemisorption , 2004 .

[17]  R. Radhakrishnan,et al.  Design of water gas shift catalysts for hydrogen production in fuel processors , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  Chunshan Song,et al.  Fuel processing for low-temperature and high-temperature fuel cells , 2002 .

[19]  C. Campbell,et al.  Model studies of cesium promoters in water-gas shift catalysts: Cs/Cu(110) , 1992 .

[20]  Dionisios G. Vlachos,et al.  Hierarchical, multiscale surface reaction mechanism development: CO and H2 oxidation, water–gas shift, and preferential oxidation of CO on Rh , 2005 .

[21]  David L. Trimm,et al.  Minimisation of carbon monoxide in a hydrogen stream for fuel cell application , 2005 .

[22]  Yuanhui Zheng,et al.  Influence of modifying additives on the catalytic activity and stability of Au/Fe2O3–MOx catalysts for the WGS reaction , 2005 .

[23]  Steven T. Evans,et al.  Mechanism of the Water Gas Shift Reaction on Pt: First Principles, Experiments, and Microkinetic Modeling , 2008 .

[24]  V. Idakiev,et al.  Iron-based catalysts for the water—gas shift reaction promoted by first-row transition metal oxides , 1986 .

[25]  D. Moon,et al.  Molybdenum Carbide Water–Gas Shift Catalyst for Fuel Cell-Powered Vehicles Applications , 2004 .

[26]  A. Bell,et al.  Role of Hydrogen Spillover in Methanol Synthesis over Cu/ZrO2 , 2000 .

[27]  U. Graham,et al.  LOW TEMPERATURE WATER GAS SHIFT: IMPACT OF PT PROMOTER LOADING ON THE PARTIAL REDUCTION OF CERIA AND CONSEQUENCES FOR CATALYST DESIGN , 2005 .

[28]  Maria Flytzani-Stephanopoulos,et al.  Activity and stability of low-content gold–cerium oxide catalysts for the water–gas shift reaction , 2005 .

[29]  L. Lefferts,et al.  Role of Re in Pt–Re/TiO2 catalyst for water gas shift reaction: A mechanistic and kinetic study , 2008 .

[30]  F. Meunier,et al.  On the importance of steady-state isotopic techniques for the investigation of the mechanism of the reverse water-gas-shift reaction. , 2004, Chemical communications.

[31]  U. Graham,et al.  Low Temperature Water–Gas Shift/Methanol Steam Reforming: Alkali Doping to Facilitate the Scission of Formate and Methoxy C–H Bonds over Pt/ceria Catalyst , 2008 .

[32]  I. Mitov,et al.  Influence of the microscopic properties of the support on the catalytic activity of Au/ZnO, Au/ZrO2, Au/Fe2O3, Au/Fe2O3–ZnO, Au/Fe2O3–ZrO2 catalysts for the WGS reaction , 2000 .

[33]  Robert J. Farrauto,et al.  Mechanism of aging for a Pt/CeO2-ZrO2 water gas shift catalyst , 2006 .

[34]  A. Trovarelli,et al.  Catalytic Properties of Ceria and CeO2-Containing Materials , 1996 .

[35]  C. Rhodes,et al.  Promotion of Fe3O4/Cr2O3 high temperature water gas shift catalyst , 2002 .

[36]  Henrik Kušar,et al.  Kinetics of the water–gas shift reaction over nanostructured copper–ceria catalysts , 2006 .

[37]  K. Seshan,et al.  Bifunctional catalysts for single-stage water-gas shift reaction in fuel cell applications. Part 1. Effect of the support on the reaction sequence. , 2007 .

[38]  A. M. Efstathiou,et al.  Mechanistic aspects of the water–gas shift reaction on alumina-supported noble metal catalysts: In situ DRIFTS and SSITKA-mass spectrometry studies , 2007 .

[39]  Juan Li,et al.  Influence of zirconia crystal phase on the catalytic performance of Au/ZrO2 catalysts for low-temperature water gas shift reaction , 2008 .

[40]  E. Freund,et al.  Infrared study of acid–base properties of thorium dioxide , 1983 .

[41]  Dependence of the kinetics of the low-temperature water-gas shift reaction on the catalyst oxygen activity as investigated by wavefront analysis , 1983 .

[42]  M. Flytzani-Stephanopoulos,et al.  Quantitative analysis of the reactivity of formate species seen by DRIFTS over a Au/Ce(La)O2 water–gas shift catalyst: First unambiguous evidence of the minority role of formates as reaction intermediates , 2007 .

[43]  T. Tabakova,et al.  Gold, silver and copper catalysts supported on TiO2 for pure hydrogen production , 2002 .

[44]  A. Kiennemann,et al.  Water-gas shift reaction over chromia-promoted magnetite. Use of temperature-programmed desorption and chemical trapping in the study of the reaction mechanism , 1990 .

[45]  Polycarpos Falaras,et al.  Low-temperature water-gas shift reaction over Au/CeO2 catalysts , 2002 .

[46]  Sergiy O. Shekhtman,et al.  On the complexity of the water-gas shift reaction mechanism over a Pt/CeO2 catalyst: Effect of the temperature on the reactivity of formate surface species studied by operando DRIFT during isotopic transient at chemical steady-state , 2007 .

[47]  M. Laborde,et al.  Activity and structure-sensitivity of the water-gas shift reaction over CuZnAl mixed oxide catalysts , 1995 .

[48]  J. Grunwaldt,et al.  The State of Cu Promoter Atoms in High-Temperature Shift Catalysts—An in Situ Fluorescence XAFS Study , 2001 .

[49]  R. Sahay,et al.  Study of copper—zinc oxide catalysts, characterisation of the coprecipitate and mixed oxide , 1989 .

[50]  J. Hanson,et al.  In situ time-resolved characterization of Au-CeO2 and AuOx-CeO2 catalysts during the water-gas shift reaction: presence of Au and O vacancies in the active phase. , 2005, The Journal of chemical physics.

[51]  S. Oki,et al.  Locus of the change in the rate-determining step , 1973 .

[52]  Ping Liu,et al.  Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: the importance of ensemble effect. , 2005, Journal of the American Chemical Society.

[53]  Yves Schuurman,et al.  Kinetic modelling of CO conversion over a Cu/ceria catalyst , 2007 .

[54]  T. Akita,et al.  Low-temperature activity of Au/CeO2 for water gas shift reaction, and characterization by ADF-STEM, temperature-programmed reaction, and pulse reaction , 2005 .

[55]  Zhong‐Yong Yuan,et al.  Gold catalysts supported on mesoporous titania for low-temperature water–gas shift reaction , 2004 .

[56]  Robert J. Farrauto,et al.  Deactivation of Pt/CeO2 water-gas shift catalysts due to shutdown/startup modes for fuel cell applications , 2005 .

[57]  Ryuji Kikuchi,et al.  Water gas shift reaction over Cu-based mixed oxides for CO removal from the reformed fuels , 2003 .

[58]  N. Coville,et al.  The selective influence of sulfur on the performance of novel cobalt-based water-gas shift catalysts , 1997 .

[59]  Dong Hyun Kim,et al.  Cu–ZrO2 Catalysts for Water-gas-shift Reaction at Low Temperatures , 2005 .

[60]  E. Matijević,et al.  Ferric hydrous oxide sols , 1978 .

[61]  Hans Bohlbro,et al.  An investigation on the kinetics of the conversion of carbon monoxide with water vapour over iron oxide based catalysts , 1969 .

[62]  Ping Liu,et al.  Water–gas shift activity of Au and Cu nanoparticles supported on molybdenum oxides , 2008 .

[63]  D. Newsome The Water-Gas Shift Reaction , 1980 .

[64]  A. Venugopal,et al.  The gold–ruthenium–iron oxide catalytic system for the low temperature water–gas-shift reaction: The examination of gold–ruthenium interactions , 2003 .

[65]  J. Hanson,et al.  Gold nanoparticles on ceria: importance of O vacancies in the activation of gold , 2007 .

[66]  K. Tohji,et al.  The structure of the copper/zinc oxide catalyst by an in-situ EXAFS study , 1985 .

[67]  C. Hardacre,et al.  DFT and in situ EXAFS investigation of gold/ceria-zirconia low-temperature water gas shift catalysts: identification of the nature of the active form of gold. , 2005, The journal of physical chemistry. B.

[68]  J. M. Zalc,et al.  Are Noble Metal-Based Water–Gas Shift Catalysts Practical for Automotive Fuel Processing? , 2002 .

[69]  Jeffrey T. Miller,et al.  The Effect of CO Adsorption at Room Temperature on the Structure of Supported Pt Particles , 1999 .

[70]  W. A. Jong,et al.  Kinetics and mechanism of the CO shift on CuZnO: II. Kinetics of the decomposition of formic acid , 1980 .

[71]  P. Panagiotopoulou,et al.  Effect of morphological characteristics of TiO2-supported noble metal catalysts on their activity for the water–gas shift reaction , 2004 .

[72]  G. Hutchings,et al.  Manganese oxide water—gas shift catalysts initial optimization studies , 1989 .

[73]  J. M. Moe Design of water-gas shift reactors , 1962 .

[74]  U. Ozkan,et al.  Development of chromium-free iron-based catalysts for high-temperature water-gas shift reaction , 2006 .

[75]  Y. Schuurman,et al.  Screening of bifunctional water-gas shift catalysts , 2008 .

[76]  C. Lund,et al.  DFT models for active sites on high temperature water-gas shift catalysts , 2008 .

[77]  R. Burch Gold catalysts for pure hydrogen production in the water-gas shift reaction: activity, structure and reaction mechanism. , 2006, Physical chemistry chemical physics : PCCP.

[78]  K. Domen,et al.  Infrared study of hydrogen adsorbed on ZrO2 , 1990 .

[79]  Hajime Iida,et al.  Effect of Pt precursors on catalytic activity of Pt/TiO2 (rutile) for water gas shift reaction at low-temperature , 2006 .

[80]  A. Krause,et al.  Structure and Stability of Formates and Carbonates on Monoclinic Zirconia: A Combined Study by Density Functional Theory and Infrared Spectroscopy , 2008 .

[81]  Raymond J. Gorte,et al.  A comparative study of water-gas-shift reaction over ceria supported metallic catalysts , 2001 .

[82]  Dong Ju Moon,et al.  Molybdenum carbide catalysts for water–gas shift , 2000 .

[83]  Peter Pfeifer,et al.  Water gas shift reaction and selective oxidation of CO in microreactors , 2004 .

[84]  Hans Bohlbro,et al.  The kinetics of the water-gas conversion IV. Influence of alkali on the rate equation , 1964 .

[85]  T. Sano,et al.  Catalytic behavior of ternary Cu/ZnO/Al2O3 systems prepared by homogeneous precipitation in water-gas shift reaction , 2007 .

[86]  D. Andreeva Low temperature water gas shift over gold catalysts , 2002 .

[87]  S. Tsang,et al.  A study of co-precipitated bimetallic gold catalysts for water-gas shift reaction , 2008 .

[88]  M. C. Rangel,et al.  A thorium-doped catalyst for the high temperature shift reaction , 2002 .

[89]  D. Weng,et al.  Effect of preparation methods on the structure and redox behavior of platinum–ceria–zirconia catalysts , 2005 .

[90]  Atsushi Ueda,et al.  Low-temperature water–gas shift reaction over gold deposited on TiO2 , 1997 .

[91]  K. Kochloefl,et al.  Cr-free iron-catalysts for water-gas shift reaction , 1995 .

[92]  C. Rhodes,et al.  Water-gas shift reaction: finding the mechanistic boundary , 1995 .

[93]  G. Germani,et al.  Platinum/ceria/alumina catalysts on microstructures for carbon monoxide conversion , 2005 .

[94]  Manos Mavrikakis,et al.  On the mechanism of low-temperature water gas shift reaction on copper. , 2008, Journal of the American Chemical Society.

[95]  G. Germani,et al.  Water-gas shift reaction kinetics over μ-structured Pt/CeO2/Al2O3 catalysts , 2006 .

[96]  A. Kiennemann,et al.  Redox Processes on Pure Ceria and on Rh/CeO2 Catalyst Monitored by X-Ray Absorption (Fast Acquisition Mode) , 1994 .

[97]  Erdogan Gulari,et al.  Comparative studies of low-temperature water-gas shift reaction over Pt/CeO2, Au/CeO2, and Au/Fe2O3 catalysts , 2003 .

[98]  T. Maniecki,et al.  Catalytic activity in water-gas shift reaction of platinum group metals supported on iron oxides , 2006 .

[99]  G. Hutchings A comparative evaluation of cobalt chromium oxide, cobalt manganese oxide, and copper manganese oxide as catalysts for the water-gas shift reaction , 1992 .

[100]  Y. Lei,et al.  Activity Patterns for the ‘‘Water Gas Shift Reaction Over Supported Precious Metal Catalysts’’ , 2005 .

[101]  C. Rhodes,et al.  Studies of the role of the copper promoter in the iron oxide/chromia high temperature water gas shift catalyst , 2003 .

[102]  Ping Liu,et al.  Water-gas-shift reaction on molybdenum carbide surfaces: essential role of the oxycarbide. , 2006, The journal of physical chemistry. B.

[103]  P. Panagiotopoulou,et al.  Effect of the nature of the support on the catalytic performance of noble metal catalysts for the water–gas shift reaction , 2006 .

[104]  D. Duprez Study of surface reaction mechanisms by 16O/18O and H/D isotopic exchange , 2006 .

[105]  J. Wagner,et al.  Catalyst development for water–gas shift , 2010 .

[106]  M. Flytzani-Stephanopoulos,et al.  Gold-ceria catalysts for low-temperature water-gas shift reaction , 2003 .

[107]  E. F. Armstrong,et al.  A Study of Catalytic Actions at Solid Surfaces. IV. The Interaction of Carbon Monoxide and Steam as Conditioned by Iron Oxide and by Copper , 1920 .

[108]  A. Freund,et al.  Improved Pt alloy catalysts for fuel cells , 1996 .

[109]  M. Nagai,et al.  Low-temperature water–gas shift reaction over cobalt–molybdenum carbide catalyst , 2006 .

[110]  Yohei Tanaka,et al.  Water gas shift reaction for the reformed fuels over Cu/MnO catalysts prepared via spinel-type oxide , 2003 .

[111]  A. Kiennemann,et al.  Application of chemical trapping to the determination of surface species and to the study of their evolution under reaction conditions in heterogeneous catalysis , 1985 .

[112]  T. Shido,et al.  Reactant-Promoted Reaction Mechanism for Water-Gas Shift Reaction on Rh-Doped CeO2 , 1993 .

[113]  G. Avdeev,et al.  Nanosized gold catalysts supported on ceria and ceria-alumina for WGS reaction: Influence of the preparation method , 2007 .

[114]  C. Philippopoulos,et al.  Ceria catalysts for water gas shift reaction: Influence of preparation method on their activity , 2006 .

[115]  G. Chinchen,et al.  Sensitive and insensitive reactions on copper catalysts: the water-gas shift reaction and methanol synthesis from carbon dioxide , 1991 .

[116]  V. Idakiev,et al.  Low-temperature water-gas shift reaction over Au/α-Fe2O3 , 1996 .

[117]  M. S. Hegde,et al.  Origin of Enhanced Reducibility/Oxygen Storage Capacity of Ce1-xTixO2 Compared to CeO2 or TiO2 , 2006 .

[118]  The Zinc Oxide-Copper Catalyst for Carbon Monoxide-Shift Conversion. I. The Dependency of the Catalytic Activity on the Chemical Composition of the Catalyst , 1967 .

[119]  Hajime Iida,et al.  Difference in the reaction behavior between Pt–Re/TiO2 (Rutile) and Pt–Re/ZrO2 catalysts for low-temperature water gas shift reactions , 2006 .

[120]  M. Daturi,et al.  IR study of polycrystalline ceria properties in oxidised and reduced states , 1999 .

[121]  M. Flytzani-Stephanopoulos,et al.  The Importance of Strongly Bound Pt–CeOx Species for the Water-gas Shift Reaction: Catalyst Activity and Stability Evaluation , 2007 .

[122]  J. Fierro,et al.  Performance enhancement in the water–gas shift reaction of platinum deposited over a cerium-modified TiO2 support , 2008 .

[123]  R. Gorte,et al.  Evidence for Low-Temperature Oxygen Migration from Ceria to Rh , 1993 .

[124]  Nancy Garland,et al.  Water-Gas Shift Catalysis , 2003 .

[125]  J. Dumesic,et al.  Isotopic exchange measurements of the rates of adsorption/desorption and interconversion of CO and CO2 over chromia-promoted magnetite: implications for water-gas shift , 1987 .

[126]  A. Gómez-Cortés,et al.  Gold nanoparticles: Support effects for the WGS reaction , 2007 .

[127]  M. Flytzani-Stephanopoulos,et al.  Activity and Stability of Cu−CeO2 Catalysts in High-Temperature Water−Gas Shift for Fuel-Cell Applications , 2004 .

[128]  Y. Lei,et al.  The origin of rhodium promotion of Fe3O4-Cr2O3 catalysts for the high-temperature water-gas shift reaction , 2006 .

[129]  J. Dumesic,et al.  The effects of metal-oxygen bond strength on properties of oxides: II. Water-gas shift over bulk oxides , 1986 .

[130]  R. Behm,et al.  Kinetics and mechanism of the low-temperature water–gas shift reaction on Au/CeO2 catalysts in an idealized reaction atmosphere , 2006 .

[131]  G. Chinchen,et al.  Water-gas shift reaction over an iron oxide/chromium oxide catalyst.: II: Stability of activity , 1984 .

[132]  G. Jacobs,et al.  Low Temperature Water–Gas Shift: Alkali Doping to Facilitate Formate C–H Bond Cleaving over Pt/Ceria Catalysts—An Optimization Problem , 2008 .

[133]  L. Lefferts,et al.  Single stage water gas shift conversion over Pt/TiO2 - problem of catalyst deactivation , 2008 .

[134]  Maria Flytzani-Stephanopoulos,et al.  On the issue of the deactivation of Au-ceria and Pt-ceria water-gas shift catalysts in practical fuel-cell applications. , 2006, Angewandte Chemie.

[135]  P. Ratnasamy,et al.  Catalytic Aluminas: Surface Models and Characterization of Surface Sites , 1978 .

[136]  Raymond J. Gorte,et al.  Evidence for Oxidation of Ceria by CO2 , 2000 .

[137]  M. C. Rangel,et al.  An environmental friendly catalyst for the high temperature shift reaction , 2000 .

[138]  I. Ivanov,et al.  Gold based catalysts on ceria and ceria-alumina for WGS reaction (WGS Gold catalysts) , 2007 .

[139]  J. Geus,et al.  Structure-sensitivity of the water-gas shift reaction over highly active Cu/SiO2 catalysts , 1986 .

[140]  Masatake Haruta,et al.  Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide , 1989 .

[141]  U. Landman,et al.  Interaction of O2 with Gold Clusters: Molecular and Dissociative Adsorption , 2003 .

[142]  A. Ghenciu,et al.  Study of the origin of the deactivation of a Pt/CeO2 catalyst during reverse water gas shift (RWGS) reaction , 2004 .

[143]  Ping Liu,et al.  Water gas shift reaction on Cu and Au nanoparticles supported on CeO2(111) and ZnO(0001): intrinsic activity and importance of support interactions. , 2007, Angewandte Chemie.

[144]  Ib Chorkendorff,et al.  A Microkinetic Analysis of the Water–Gas Shift Reaction under Industrial Conditions , 1996 .

[145]  M. Mohamed,et al.  Low temperature water-gas shift reaction on cerium containing mordenites prepared by different methods , 2005 .

[146]  A. C. Crawford,et al.  Catalytic links among the water–gas shift, water-assisted formic acid decomposition, and methanol steam reforming reactions over Pt-promoted thoria , 2005 .

[147]  Charles T. Campbell,et al.  A kinetic model of the water gas shift reaction , 1992 .

[148]  J. Papavasiliou,et al.  Water–gas shift activity of doped Pt/CeO2 catalysts , 2007 .

[149]  Raymond J. Gorte,et al.  Studies of the water-gas-shift reaction on ceria-supported Pt, Pd, and Rh: Implications for oxygen-storage properties , 1998 .

[150]  Arturo Martínez-Arias,et al.  In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria. , 2006, The journal of physical chemistry. B.

[151]  A. A. Davydov,et al.  Molecular Spectroscopy of Oxide Catalyst Surfaces , 2003 .

[152]  J. Nørskov,et al.  Insights into the reactivity of supported Au nanoparticles: combining theory and experiments , 2007 .

[153]  M. S. Spencer,et al.  The role of zinc oxide in Cu/ZnO catalysts for methanol synthesis and the water–gas shift reaction , 1999 .

[154]  P. Boolchand,et al.  Modified nano-crystalline ferrites for high-temperature WGS membrane reactor applications , 2008 .

[155]  Manos Mavrikakis,et al.  Trends in low-temperature water–gas shift reactivity on transition metals , 2005 .

[156]  Dionisios G. Vlachos,et al.  Is the water–gas shift reaction on Pt simple?: Computer-aided microkinetic model reduction, lumped rate expression, and rate-determining step , 2005 .

[157]  S. Hasegawa,et al.  Mechanistic study of water–gas-shift reaction over TiO2 supported Pt–Re and Pd–Re catalysts , 2005 .

[158]  M. Flytzani-Stephanopoulos,et al.  Nanostructured Au–CeO2 Catalysts for Low-Temperature Water–Gas Shift , 2001 .

[159]  Norma Amadeo,et al.  Hydrogen production from the low-temperature water-gas shift reaction: Kinetics and simulation of the industrial reactor , 1995 .

[160]  Yohei Tanaka,et al.  Influence of preparation method and additive for Cu–Mn spinel oxide catalyst on water gas shift reaction of reformed fuels , 2005 .

[161]  G. K. Boreskov Forms of oxygen bonds on the surface of oxidation catalysts , 1966 .

[162]  P. Panagiotopoulou,et al.  Particle size effects on the reducibility of titanium dioxide and its relation to the water-gas shift activity of Pt/TiO2 catalysts , 2006 .

[163]  U. Graham,et al.  LOW TEMPERATURE WATER-GAS SHIFT: EXAMINING THE EFFICIENCY OF AU AS A PROMOTER FOR CERIA-BASED CATALYSTS PREPARED BY CVD OF A AU PRECURSOR , 2005 .

[164]  A. C. Crawford,et al.  Water-gas shift: an examination of Pt promoted MgO and tetragonal and monoclinic ZrO2 by in situ drifts , 2005 .

[165]  C. Hardacre,et al.  Quantitative DRIFTS investigation of possible reaction mechanisms for the water-gas shift reaction on high-activity Pt- and Au-based catalysts , 2007 .

[166]  D. Ollis,et al.  The chemistry and catalysis of the water gas shift reaction: 1. The kinetics over supported metal catalysts , 1981 .

[167]  W. A. Jong,et al.  Kinetics and mechanism of the CO shift on CuZnO: 1. Kinetics of the forward and reverse CO shift reactions , 1980 .

[168]  J. Rynkowski,et al.  Redox behaviour of ceria–titania mixed oxides , 2000 .

[169]  Martyn V. Twigg,et al.  Deactivation of supported copper metal catalysts for hydrogenation reactions , 2001 .

[170]  Raymond J. Gorte,et al.  Deactivation Mechanisms for Pd/Ceria During the Water-Gas Shift Reaction , 2002 .

[171]  K. Klier Preparation of bifunctonal catallysts , 1992 .

[172]  T. Salmi,et al.  Kinetic Study of the Low-Temperature Water-Gas Shift Reaction over a Cu—ZnO Catalyst , 1989 .

[173]  U. Graham,et al.  Low temperature water-gas shift: kinetic isotope effect observed for decomposition of surface formates for Pt/ceria catalysts , 2004 .

[174]  J. White,et al.  Photocatalytic water decomposition and water-gas shift reactions over NaOH-coated, platinized TiO2. Technical report no. 19, 1 January-31 December 80 , 1980 .

[175]  T. Shido,et al.  Regulation of reaction intermediate by reactant in the water-gas shift reaction on CeO2, in relation to reactant-promoted mechanism , 1992 .

[176]  G. Jacobs,et al.  Low temperature water-gas shift: Characterization of Pt-based ZrO2 catalyst promoted with Na discovered by combinatorial methods , 2007 .

[177]  J. Fierro,et al.  A density functional theory study of the dissociation of H2 on gold clusters: importance of fluxionality and ensemble effects. , 2006, The Journal of chemical physics.

[178]  M. Laborde,et al.  Effect of temperature and reduction on the activity of high temperature water gas shift catalysts , 1986 .

[179]  Ute Kaiser,et al.  Deactivation of a Au/CeO2 catalyst during the low-temperature water-gas shift reaction and its reactivation : A combined TEM, XRD, XPS, DRIFTS, and activity study , 2007 .

[180]  R. Behm,et al.  The role of cationic Au3+ and nonionic Au0 species in the low-temperature water–gas shift reaction on Au/CeO2 catalysts , 2007 .

[181]  Bernard Delmon,et al.  Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4 , 1993 .

[182]  Robert J. Farrauto,et al.  A new generation of water gas shift catalysts for fuel cell applications , 2003 .

[183]  A. C. Crawford,et al.  Water-gas shift: steady state isotope switching study of the water-gas shift reaction over Pt/ceria using in-situ DRIFTS , 2005 .

[184]  Robert J. Farrauto,et al.  Determination of kinetic parameters for the water-gas shift reaction on copper catalysts under realistic conditions for fuel cell applications , 2003 .