Applying microscopy to the analysis of nuclear structure and function.

[1]  Martin Chalfie,et al.  Green fluorescent protein : properties, applications, and protocols , 2005 .

[2]  S W Hell,et al.  Comparison of the axial resolution of practical Nipkow‐disk confocal fluorescence microscopy with that of multifocal multiphoton microscopy: theory and experiment , 2002, Journal of microscopy.

[3]  J. Milner,et al.  The interaction of p53 with the nuclear matrix is mediated by F-actin and modulated by DNA damage , 2002, Oncogene.

[4]  G. Brakenhoff,et al.  Optical far‐field microscopy of single molecules with 3.4 nm lateral resolution , 2002, Journal of microscopy.

[5]  Christoph Cremer,et al.  Spatially modulated illumination microscopy allows axial distance resolution in the nanometer range. , 2002, Applied optics.

[6]  J. Swedlow,et al.  A workingperson's guide to deconvolution in light microscopy. , 2001, BioTechniques.

[7]  T. Ha,et al.  Single-molecule fluorescence resonance energy transfer. , 2001, Methods.

[8]  D. Toomre,et al.  Lighting up the cell surface with evanescent wave microscopy. , 2001, Trends in cell biology.

[9]  D. Jackson,et al.  Coupled Transcription and Translation Within Nuclei of Mammalian Cells , 2001, Science.

[10]  F. Wouters,et al.  Imaging biochemistry inside cells. , 2001, Trends in cell biology.

[11]  T Misteli,et al.  Protein dynamics: implications for nuclear architecture and gene expression. , 2001, Science.

[12]  J. Nickerson,et al.  Experimental observations of a nuclear matrix. , 2001, Journal of cell science.

[13]  K. König,et al.  Multiphoton microscopy in life sciences , 2000, Journal of microscopy.

[14]  Joe Cain,et al.  The birth of the cell , 2000, Medical History.

[15]  Stefan W. Hell,et al.  Subresolution axial distance measurements in far-field fluorescence microscopy with precision of 1 nanometer. , 2000 .

[16]  E. Kiseleva,et al.  The nuclear pore complex: mediator of translocation between nucleus and cytoplasm. , 2000, Journal of cell science.

[17]  D. Jackson,et al.  The path of RNA through nuclear pores: apparent entry from the sides into specialized pores. , 2000, Journal of cell science.

[18]  S. Paddock,et al.  Confocal laser scanning microscopy. , 1999, BioTechniques.

[19]  David L. Becker,et al.  Confocal Microscopy: Methods and Protocols. , 1999 .

[20]  Agard,et al.  I5M: 3D widefield light microscopy with better than 100 nm axial resolution , 1999, Journal of microscopy.

[21]  D. Jackson,et al.  Regional specialization in human nuclei: visualization of discrete sites of transcription by RNA polymerase III , 1999, The EMBO journal.

[22]  D. Bazett-Jones,et al.  Electron spectroscopic imaging of chromatin. , 1999, Methods.

[23]  F. Iborra,et al.  The Size of Sites Containing SR Proteins in Human Nuclei: Problems Associated with Characterizing Small Structures by Immunogold Labeling , 1998, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[24]  A. Meixner,et al.  Scanning near-field optical microscopy in cell biology and microbiology. , 1998, Cellular and molecular biology.

[25]  K. V. van Holde,et al.  Chromatin fiber structure: morphology, molecular determinants, structural transitions. , 1998, Biophysical journal.

[26]  S. Fakan,et al.  Fine Structural Specific Visualization of RNA on Ultrathin Sections , 1998, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[27]  A. Koster,et al.  Automated electron tomography of large nuclear RNP (InRNP) particles--the naturally assembled complexes of precursor messenger RNA and splicing factors. , 1997, Journal of structural biology.

[28]  A. Toker,et al.  Signalling through the lipid products of phosphoinositide-3-OH kinase , 1997, Nature.

[29]  E. Manders,et al.  Chromatic shift in multicolour confocal microscopy , 1997 .

[30]  A. Pombo,et al.  The localization of sites containing nascent RNA and splicing factors. , 1996, Experimental cell research.

[31]  D. Jackson,et al.  Active RNA polymerases are localized within discrete transcription "factories' in human nuclei. , 1996, Journal of cell science.

[32]  M. Derenzini,et al.  Osmium ammine: review of current applications to visualize DNA in electron microscopy. , 1996, Biology of the cell.

[33]  C Cremer,et al.  Confocal theta fluorescence microscopy with annular apertures. , 1996, Applied optics.

[34]  P. Testillano,et al.  The methylation-acetylation method: an ultrastructural cytochemistry for nucleic acids compatible with immunogold studies. , 1995, Journal of structural biology.

[35]  D. Jackson,et al.  Visualization of replication factories attached to a nucleoskeleton , 1993, Cell.

[36]  M. Goldberg,et al.  High resolution scanning electron microscopy of the nuclear envelope: demonstration of a new, regular, fibrous lattice attached to the baskets of the nucleoplasmic face of the nuclear pores , 1992, The Journal of cell biology.

[37]  F. Thoma,et al.  [7] Electron microscopy of chromatin , 1989 .

[38]  Y. Osheim,et al.  Electron microscopy of ribonucleoprotein complexes on nascent RNA using Miller chromatin spreading method. , 1989, Methods in enzymology.

[39]  A. Lacey,et al.  Light microscopy in biology : a practical approach , 1989 .

[40]  D. Knight,et al.  Staining methods for sectioned material , 1977 .

[41]  J. Corliss,et al.  Practical methods in electron microscopy , 1973 .