Mining top-n local outliers in large databases
暂无分享,去创建一个
Anthony K. H. Tung | Jiawei Han | Wen Jin | Jiawei Han | A. Tung | Wen Jin
[1] R. Ng,et al. Eecient and Eeective Clustering Methods for Spatial Data Mining , 1994 .
[2] Jiawei Han,et al. Efficient and Effective Clustering Methods for Spatial Data Mining , 1994, VLDB.
[3] Hans-Peter Kriegel,et al. LOF: identifying density-based local outliers , 2000, SIGMOD '00.
[4] Raymond T. Ng,et al. Algorithms for Mining Distance-Based Outliers in Large Datasets , 1998, VLDB.
[5] A. Madansky. Identification of Outliers , 1988 .
[6] Sudipto Guha,et al. CURE: an efficient clustering algorithm for large databases , 1998, SIGMOD '98.
[7] Hans-Peter Kriegel,et al. The X-tree : An Index Structure for High-Dimensional Data , 2001, VLDB.
[8] Rajeev Rastogi,et al. Efficient algorithms for mining outliers from large data sets , 2000, SIGMOD 2000.
[9] Hans-Peter Kriegel,et al. LOF: identifying density-based local outliers , 2000, SIGMOD 2000.
[10] Tian Zhang,et al. BIRCH: an efficient data clustering method for very large databases , 1996, SIGMOD '96.
[11] Hans-Peter Kriegel,et al. The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.
[12] W. R. Buckland,et al. Outliers in Statistical Data , 1979 .
[13] Hans-Peter Kriegel,et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.
[14] Sridhar Ramaswamy,et al. Efficient algorithms for mining outliers from large data sets , 2000, SIGMOD '00.