Towards a learning progression of energy

This article presents an empirical study on an initial learning progression of energy, a concept of central importance to the understanding of science. Learning progressions have been suggested as one vehicle to support the systematic and successful teaching of core science concepts. Ideally, a learning progression will provide teachers with a framework to assess students' level of understanding of a core concept and to guide students towards a more sophisticated level of understanding. Taking existing research as a point of departure, developing a learning progression involves recurring cycles of empirical validation and theoretical refinement. In this article, we report about our efforts in working towards a learning progression of energy. First, we derived an initial learning progression by utilizing existing curriculum, research on students' understanding, and development of students' understanding of energy. Second, we used these sources of guidance to develop a robust measurement instrument, the Energy Concept Assessment (ECA), based on multiple choice questions. Third, we utilized this instrument to assess the understanding of N = 1,856 students from three different grade levels, Grades 6, 8, and 10. Findings provided evidence that students from Grade 6 mostly obtain an understanding of energy forms and energy sources. Students of Grade 8 additionally demonstrate an understanding of energy transfer and transformation, whereas only students of Grade 10, and then only some of these students, achieve a deeper understanding of energy conservation. We discuss the implications of our findings against the background of existing research on students understanding of energy. Finally, further steps in working towards a learning progression of energy are identified. Zusammenfassung: Der vorliegende Artikel beschreibt den ersten Schritt in der Entwicklung und Validierung einer Learning Progression fur das Energiekonzept; einem Konzept, das zentral fur die Entwicklung eines tiefergehenden Versta¨ndnisses der Naturwissenschaften ist. Learning Progressions sollen das das systematische und erfolgreiche Unterrichten zentraler naturwissenschaftlicher Konzepte unterstutzen. Idealerweise sollen Learning Progressions Lehrkraften eine Rahmen bieten, den Entwicklungsstand ihrer Schulerinnen und Schuler hinsichtlich des Verstandnisses zentraler naturwissenschaftlicher Konzepte einzuschatzen und Unterricht so zu gestalten, dass er die Entwicklung eines elaborierten Verstandnisses befordert. Die Entwicklung einer Learning Progression beginnt mit der theoretischen Begrundung einer vorlaufigen Learning Progression, gefolgt von iterativen Zyklen empirischer Validierung und Uberarbeitung. In diesem Artikel berichten wir uber unsere Arbeiten zur Entwicklung einer Learning Progression fur das Energiekonzept. Im Rahmen dieser Arbeiten wurde zunachst ausgehend von vorliegenden Befunden zum Verstandnis und der Entwicklung des Verstandnisses von Energie eine vorlaufige Learning Progression begrundet. Im zweiten Schritt wurde auf Grundlage der Learning Progression ein entsprechendes Instrument auf Basis von Multiple-Choice-Aufgaben entwickelt – das Energy Concept Assessment (ECA). Im dritten und letzten Schritt wurde das Instrument eingesetzt, um das Verstandnis von Energie bei N = 1856 Schulerinnen und Schulern der Jahrgange 6, 8 und 10 zu erfassen. Die Ergebnisse unserer Untersuchung legen nahe, dass Schulerinnen und Schuler aus Jahrgang 6 im Wesentlichen uber ein Verstandnis von Energieformen und –quellen verfugen. Schulerinnen und Schuler aus Jahrgang 8 zeigen daruber hinaus ein Verstandnis von Energieumwandlung und –transport. Ein Verstandnis von Energieerhaltung ist nur von Schulerinnen und Schuler aus Jahrgang 10 und dann auch nur von einem Teil dieser Schulerinnen und Schuler zu erwarten. Vor dem Hintergrund dieser Ergebnisse und der bisherigen Forschung zum Energieverstandnis, diskutiert der Artikel weitere Schritte fur die die Entwicklung einer Learning Progression fur das Energiekonzept. © 2012 Wiley Periodicals, Inc. J Res Sci Teach 50:162–188, 2013

[1]  John T. Guthrie,et al.  Predicting Conceptual Understanding With Cognitive and Motivational Variables , 1999 .

[2]  M. Linn,et al.  Heat energy and temperature concepts of adolescents, adults, and experts: Implications for curricular improvements , 1994 .

[3]  T. Shultz,et al.  Development of the Concepts of Energy Conservation and Entropy. , 1981 .

[4]  Piet Lijnse,et al.  Energy between the life‐world of pupils and the world of physics , 1990 .

[5]  Shawn Y. Stevens,et al.  Developing a Hypothetical Multi-Dimensional Learning Progression for the Nature of Matter. , 2009 .

[6]  D. Ayres The Magnetic Attraction of Honeybee Navigation. , 1991 .

[7]  Michael Lamport Commons,et al.  Introduction to the model of hierarchical complexity. , 2007 .

[8]  R. Driver,et al.  Students' use of the principle of energy conservation in problem situations , 1985 .

[9]  Charles W. Anderson,et al.  Developing a multi-year learning progression for carbon cycling in socio-ecological systems , 2009 .

[10]  D. M. Watts,et al.  Some alternative views of energy , 1983 .

[11]  Jeffrey Nordine,et al.  Transforming energy instruction in middle school to support integrated understanding and future learning , 2011 .

[12]  Derek C. Briggs,et al.  Diagnostic Assessment With Ordered Multiple-Choice Items , 2006 .

[13]  J. Piaget Intellectual Evolution from Adolescence to Adulthood , 1972 .

[14]  M. Linn,et al.  Assessing Knowledge Integration in Science: Construct, Measures, and Evidence , 2008 .

[15]  Kathryn Scantlebury,et al.  The role of Rasch analysis when conducting science education research utilizing multiple‐choice tests , 2006 .

[16]  M. B. Ogunniyi Adapting western science to traditional African culture , 1988 .

[17]  Ricardo Trumper,et al.  Children's energy concepts: a cross‐age study , 1993 .

[18]  Ben Kelcey,et al.  How and when does complex reasoning occur? Empirically driven development of a learning progression focused on complex reasoning about biodiversity , 2009 .

[19]  Mark Wilson,et al.  Measuring Progressions: Assessment Structures Underlying a Learning Progression , 2009 .

[20]  L. Viennot Spontaneous Reasoning in Elementary Dynamics. , 1979 .

[21]  Hee-Sun Lee,et al.  Assessing learning progression of energy concepts across middle school grades: The knowledge integration perspective , 2010 .

[22]  R. Brennan,et al.  Test Equating, Scaling, and Linking , 2004 .

[23]  Sascha Bernholt,et al.  Assessing the complexity of students' knowledge in chemistry , 2011 .

[24]  Xiufeng Liu,et al.  Using Data Mining to Predict K-12 Students' Performance on Large-Scale Assessment Items Related to Energy. , 2008 .

[25]  Cindy E. Hmelo-Silver,et al.  Learning progressions: Aligning curriculum, instruction, and assessment , 2009 .

[26]  H Goldring,et al.  Students' difficulties with energy and related concepts , 1994 .

[27]  Robert M. Gagné,et al.  Memory Structures and Learning Outcomes , 1978 .

[28]  John K. Gilbert,et al.  Enigmas in School Science: students’ conceptions for scientifically associated words , 1983 .

[29]  Ricardo Trumper,et al.  Teaching of Energy Issues: A Debate Proposal for a Global Reorientation , 2007 .

[30]  Reinders Duit,et al.  Learning the Energy Concept in School--Empirical Results from the Philippines and West Germany. , 1984 .

[31]  Anne McKeough,et al.  Developmental growth in students' concept of energy: Analysis of selected items from the TIMSS database , 2005 .

[32]  Kenneth T. V. Grattan,et al.  Introduction to special issue on measurement and instrumentation science , 1994 .

[33]  B. Reiser,et al.  Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners , 2009 .

[34]  Katherine L. McNeill,et al.  A learning progression for scientific argumentation: Understanding student work and designing supportive instructional contexts , 2010 .

[35]  Margaret Wu,et al.  ACER conquest: generalised item response modelling software , 1998 .

[36]  Paul J. Feltovich,et al.  Categorization and Representation of Physics Problems by Experts and Novices , 1981, Cogn. Sci..

[37]  K. Fischer A theory of cognitive development: The control and construction of hierarchies of skills. , 1980 .

[38]  W. Schnotz,et al.  A Reconsideration of Cognitive Load Theory , 2007 .