Metabolism and Brain Cancer

Cellular energy metabolism is one of the main processes affected during the transition from normal to cancer cells, and it is a crucial determinant of cell proliferation or cell death. As a support for rapid proliferation, cancer cells choose to use glycolysis even in the presence of oxygen (Warburg effect) to fuel macromolecules for the synthesis of nucleotides, fatty acids, and amino acids for the accelerated mitosis, rather than fuel the tricarboxylic acid cycle and oxidative phosphorylation. Mitochondria biogenesis is also reprogrammed in cancer cells, and the destiny of those cells is determined by the balance between energy and macromolecule supplies, and the efficiency of buffering of the cumulative radical oxygen species. In glioblastoma, the most frequent and malignant adult brain tumor, a metabolic shift toward aerobic glycolysis is observed, with regulation by well known genes as integrants of oncogenic pathways such as phosphoinositide 3-kinase/protein kinase, MYC, and hypoxia regulated gene as hypoxia induced factor 1. The expression profile of a set of genes coding for glycolysis and the tricarboxylic acid cycle in glioblastoma cases confirms this metabolic switch. An understanding of how the main metabolic pathways are modified by cancer cells and the interactions between oncogenes and tumor suppressor genes with these pathways may enlighten new strategies in cancer therapy. In the present review, the main metabolic pathways are compared in normal and cancer cells, and key regulations by the main oncogenes and tumor suppressor genes are discussed. Potential therapeutic targets of the cancer energetic metabolism are enumerated, highlighting the astrocytomas, the most common brain cancer.

[1]  T. Kourelis,et al.  Metformin and cancer: new applications for an old drug , 2012, Medical Oncology.

[2]  Petr Ježek,et al.  Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. , 2011, The international journal of biochemistry & cell biology.

[3]  M. Grootveld,et al.  The importance of mitochondria in the tumourigenic phenotype: gliomas as the paradigm (review). , 2011, International journal of molecular medicine.

[4]  Zev A. Binder,et al.  The Genetic Landscape of the Childhood Cancer Medulloblastoma , 2011, Science.

[5]  S. Marie,et al.  IDH1 mutations in a Brazilian series of Glioblastoma , 2011, Clinics.

[6]  M. Skalej,et al.  Gliomas in adults. , 2010, Deutsches Arzteblatt international.

[7]  C. Larsen [Genetic and molecular abnormalities of glioblastomas (GBM)]. , 2010, Bulletin du Cancer.

[8]  C. Larsen Anomalies génétiques et moléculaires des glioblastomes (GBM) , 2010 .

[9]  Mathilde Jalving,et al.  Metformin: taking away the candy for cancer? , 2010, European journal of cancer.

[10]  Hai Yan,et al.  Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. , 2010, Journal of the National Cancer Institute.

[11]  H. Duffau,et al.  Oncological patterns of care and outcome for 952 patients with newly diagnosed glioblastoma in 2004. , 2010, Neuro-oncology.

[12]  Rui Huang,et al.  Glioma-derived mutations in IDH: from mechanism to potential therapy. , 2010, Biochemical and biophysical research communications.

[13]  J. Mcculloch,et al.  The Role of Mitochondria in Glioma Pathophysiology , 2010, Molecular Neurobiology.

[14]  E. Gottlieb,et al.  p53 regulation of metabolic pathways. , 2010, Cold Spring Harbor perspectives in biology.

[15]  B. Tran,et al.  Survival comparison between glioblastoma multiforme and other incurable cancers , 2010, Journal of Clinical Neuroscience.

[16]  E. Gottlieb,et al.  Targeting metabolic transformation for cancer therapy , 2010, Nature Reviews Cancer.

[17]  W. Vandertop,et al.  The prognostic IDH1R132 mutation is associated with reduced NADP+-dependent IDH activity in glioblastoma , 2010, Acta Neuropathologica.

[18]  R. Sun,et al.  Reversal of the glycolytic phenotype by dichloroacetate inhibits metastatic breast cancer cell growth in vitro and in vivo , 2010, Breast Cancer Research and Treatment.

[19]  R. Deberardinis,et al.  Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer , 2010, Oncogene.

[20]  G. Semenza,et al.  Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression , 2010, Proceedings of the National Academy of Sciences.

[21]  M. Kiebish,et al.  Targeting energy metabolism in brain cancer through calorie restriction and the ketogenic diet. , 2009, Journal of cancer research and therapeutics.

[22]  Eyal Gottlieb,et al.  Metabolic transformation in cancer. , 2009, Carcinogenesis.

[23]  N. Isern,et al.  c-Myc activates multiple metabolic networks to generate substrates for cell-cycle entry , 2009, Oncogene.

[24]  A. Jemal,et al.  Cancer Statistics, 2009 , 2009, CA: a cancer journal for clinicians.

[25]  K. Vousden Functions of p53 in metabolism and invasion. , 2009, Biochemical Society transactions.

[26]  S. Moncada,et al.  The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C–Cdh1 , 2009, Nature Cell Biology.

[27]  L. Cantley,et al.  Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation , 2009, Science.

[28]  Keshav K. Singh,et al.  p53 regulates mtDNA copy number and mitocheckpoint pathway , 2009, Journal of carcinogenesis.

[29]  G. Shadel,et al.  Loss of p53 causes mitochondrial DNA depletion and altered mitochondrial reactive oxygen species homeostasis. , 2009, Biochimica et biophysica acta.

[30]  Kun-Liang Guan,et al.  Glioma-Derived Mutations in IDH1 Dominantly Inhibit IDH1 Catalytic Activity and Induce HIF-1α , 2009, Science.

[31]  A. Merlo,et al.  Translating biology into clinic: the case of glioblastoma. , 2009, Current opinion in cell biology.

[32]  S. Marie,et al.  ICAM-1 (Lys469Glu) and PECAM-1 (Leu125Val) polymorphisms in diffuse astrocytomas , 2009, Clinical and Experimental Medicine.

[33]  Antonio G. Cordente,et al.  C75 is converted to C75-CoA in the hypothalamus, where it inhibits carnitine palmitoyltransferase 1 and decreases food intake and body weight. , 2009, Biochemical pharmacology.

[34]  Xiaojun Xu,et al.  Transketolase‐like protein 1 (TKTL1) is required for rapid cell growth and full viability of human tumor cells , 2009, International journal of cancer.

[35]  Russell G. Jones,et al.  Tumor suppressors and cell metabolism: a recipe for cancer growth. , 2009, Genes & development.

[36]  C. Thompson,et al.  Metabolic enzymes as oncogenes or tumor suppressors. , 2009, The New England journal of medicine.

[37]  Yau-Huei Wei,et al.  Mitochondrial DNA Instability and Metabolic Shift in Human Cancers , 2009, International journal of molecular sciences.

[38]  Hua Li,et al.  Structural and Biochemical Studies of TIGAR (TP53-induced Glycolysis and Apoptosis Regulator)* , 2009, Journal of Biological Chemistry.

[39]  A. Marchetti,et al.  IDH1 mutations at residue p.R132 (IDH1R132) occur frequently in high‐grade gliomas but not in other solid tumors , 2009, Human mutation.

[40]  S. Ben-Haim,et al.  18F-FDG PET and PET/CT in the Evaluation of Cancer Treatment Response* , 2008, Journal of Nuclear Medicine.

[41]  Anthony Mancuso,et al.  Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction , 2008, Proceedings of the National Academy of Sciences.

[42]  M. Couce,et al.  Differences in Mitochondrial Function and Antioxidant Systems between Regions of Human Glioma , 2008, Cellular Physiology and Biochemistry.

[43]  Ralph Weissleder,et al.  Effective Use of PI3K and MEK Inhibitors to Treat Mutant K-Ras G12D and PIK3CA H1047R Murine Lung Cancers , 2008, Nature Medicine.

[44]  M. Kiebish,et al.  Targeting energy metabolism in brain cancer with calorically restricted ketogenic diets , 2008, Epilepsia.

[45]  W. Kaelin The von Hippel–Lindau tumour suppressor protein: O2 sensing and cancer , 2008, Nature Reviews Cancer.

[46]  W. Plunkett,et al.  Nucleoside analogs: molecular mechanisms signaling cell death , 2008, Oncogene.

[47]  P. Lotufo,et al.  Association of EGFR c.2073A>T polymorphism with decreased risk of diffusely infiltrating astrocytoma in a Brazilian case-control study. , 2008, The International journal of biological markers.

[48]  D. Busam,et al.  An Integrated Genomic Analysis of Human Glioblastoma Multiforme , 2008, Science.

[49]  D. Sabatini,et al.  Cancer Cell Metabolism: Warburg and Beyond , 2008, Cell.

[50]  Joshua M. Korn,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.

[51]  M.-H. Lee,et al.  Roles of p53, Myc and HIF-1 in Regulating Glycolysis — the Seventh Hallmark of Cancer , 2008, Cellular and Molecular Life Sciences.

[52]  Robert A. Harris,et al.  Pyruvate Dehydrogenase Complex Activity Controls Metabolic and Malignant Phenotype in Cancer Cells* , 2008, Journal of Biological Chemistry.

[53]  R. Perona,et al.  Epidermal growth factor receptor and glioblastoma multiforme: molecular basis for a new approach , 2008, Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico.

[54]  A. Regev,et al.  An embryonic stem cell–like gene expression signature in poorly differentiated aggressive human tumors , 2008, Nature Genetics.

[55]  Nobuyuki Tanaka,et al.  p53 regulates glucose metabolism through an IKK-NF-κB pathway and inhibits cell transformation , 2008, Nature Cell Biology.

[56]  Suely K. N. Marie,et al.  Gene expression profile analysis of primary glioblastomas and non-neoplastic brain tissue: identification of potential target genes by oligonucleotide microarray and real-time quantitative PCR , 2008, Journal of Neuro-Oncology.

[57]  M. Knopp,et al.  Synergistic Antipancreatic Tumor Effect by Simultaneously Targeting Hypoxic Cancer Cells With HSP90 Inhibitor and Glycolysis Inhibitor , 2008, Clinical Cancer Research.

[58]  H. Christofk,et al.  Pyruvate kinase M2 is a phosphotyrosine-binding protein , 2008, Nature.

[59]  Ru Wei,et al.  The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth , 2008, Nature.

[60]  A. Camargo,et al.  Maternal embryonic leucine zipper kinase transcript abundance correlates with malignancy grade in human astrocytomas , 2008, International journal of cancer.

[61]  John O Trent,et al.  Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth , 2008, Molecular Cancer Therapeutics.

[62]  R. Deberardinis,et al.  Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis , 2007, Proceedings of the National Academy of Sciences.

[63]  L. Chin,et al.  Malignant astrocytic glioma: genetics, biology, and paths to treatment. , 2007, Genes & development.

[64]  D. Hardie,et al.  AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy , 2007, Nature Reviews Molecular Cell Biology.

[65]  P. Pedersen,et al.  Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen , 2007, Journal of bioenergetics and biomembranes.

[66]  B. Scheithauer,et al.  The 2007 WHO Classification of Tumours of the Central Nervous System , 2007, Acta Neuropathologica.

[67]  Nicola Zamboni,et al.  Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells , 2007, The Journal of cell biology.

[68]  S. K. Nagahashi Marie,et al.  Expression of HOXC9 and E2F2 are up-regulated in CD133(+) cells isolated from human astrocytomas and associate with transformation of human astrocytes. , 2007, Biochimica et biophysica acta.

[69]  Wenzhe Ma,et al.  A pivotal role for p53: balancing aerobic respiration and glycolysis , 2007, Journal of bioenergetics and biomembranes.

[70]  Yusuke Nakamura,et al.  Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion , 2007, Nature Genetics.

[71]  P. Kleihues,et al.  Genetic pathways to primary and secondary glioblastoma. , 2007, The American journal of pathology.

[72]  C. Scrideli,et al.  Prognostic significance of co-overexpression of the EGFR/IGFBP-2/HIF-2A genes in astrocytomas , 2007, Journal of Neuro-Oncology.

[73]  Monica L. Mo,et al.  Global reconstruction of the human metabolic network based on genomic and bibliomic data , 2007, Proceedings of the National Academy of Sciences.

[74]  Gary L Gallia,et al.  PIK3CA Gene Mutations in Pediatric and Adult Glioblastoma Multiforme , 2006, Molecular Cancer Research.

[75]  Chi V Dang,et al.  Cancer's molecular sweet tooth and the Warburg effect. , 2006, Cancer research.

[76]  Saroj P. Mathupala,et al.  Hexokinase II: Cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria , 2006, Oncogene.

[77]  D. Green,et al.  p53 and Metabolism: Inside the TIGAR , 2006, Cell.

[78]  Oksana Gavrilova,et al.  p53 Regulates Mitochondrial Respiration , 2006, Science.

[79]  P. Leder,et al.  Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. , 2006, Cancer cell.

[80]  E. T. Gawlinski,et al.  Acid-mediated tumor invasion: a multidisciplinary study. , 2006, Cancer research.

[81]  Thomas D. Wu,et al.  Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. , 2006, Cancer cell.

[82]  G. Semenza,et al.  HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. , 2006, Cell metabolism.

[83]  Y. Yoon,et al.  Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Eyal Gottlieb,et al.  Mitochondrial tumour suppressors: a genetic and biochemical update , 2005, Nature Reviews Cancer.

[85]  Daniel E Bauer,et al.  ATP citrate lyase inhibition can suppress tumor cell growth. , 2005, Cancer cell.

[86]  C. Boschek,et al.  Pyruvate kinase type M2 and its role in tumor growth and spreading. , 2005, Seminars in cancer biology.

[87]  S. K. Nagahashi Marie,et al.  Detection of somatic TP53 splice site mutations in diffuse astrocytomas. , 2005, Cancer letters.

[88]  R. Deberardinis,et al.  The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid β-oxidation , 2005, Oncogene.

[89]  Dario R Alessi,et al.  Metformin and reduced risk of cancer in diabetic patients , 2005, BMJ : British Medical Journal.

[90]  Martin J. van den Bent,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[91]  R. Mirimanoff,et al.  MGMT gene silencing and benefit from temozolomide in glioblastoma. , 2005, The New England journal of medicine.

[92]  Peng Huang,et al.  Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. , 2005, Cancer research.

[93]  David Beach,et al.  Glycolytic enzymes can modulate cellular life span. , 2005, Cancer research.

[94]  Martin G Pomper,et al.  Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. , 2004, Biochemical and biophysical research communications.

[95]  R. Gillies,et al.  Why do cancers have high aerobic glycolysis? , 2004, Nature Reviews Cancer.

[96]  R. Sakakibara,et al.  Identification and characterization of the hypoxia-responsive element of the human placental 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene. , 2004, Journal of biochemistry.

[97]  A. Alavi,et al.  Akt Stimulates Aerobic Glycolysis in Cancer Cells , 2004, Cancer Research.

[98]  M. Armoni,et al.  The Tumor Suppressor p53 Down-Regulates Glucose Transporters GLUT1 and GLUT4 Gene Expression , 2004, Cancer Research.

[99]  S. Gerson MGMT: its role in cancer aetiology and cancer therapeutics , 2004, Nature Reviews Cancer.

[100]  N. Savaraj,et al.  2-Deoxy-d-glucose Increases the Efficacy of Adriamycin and Paclitaxel in Human Osteosarcoma and Non-Small Cell Lung Cancers In Vivo , 2004, Cancer Research.

[101]  S. Di Cosimo,et al.  Addition of either lonidamine or granulocyte colony-stimulating factor does not improve survival in early breast cancer patients treated with high-dose epirubicin and cyclophosphamide. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[102]  B. Dutrillaux,et al.  Phase II Study of Lonidamine and Diazepam in the Treatment of Recurrent Glioblastoma Multiforme , 2003, Journal of Neuro-Oncology.

[103]  Keshav K. Singh,et al.  Mitochondrial impairment in p53-deficient human cancer cells. , 2003, Mutagenesis.

[104]  Paolo Carlini,et al.  Lonidamine: efficacy and safety in clinical trials for the treatment of solid tumors. , 2003, Drugs of today.

[105]  M. Berger,et al.  Epidemiology of primary brain tumors: current concepts and review of the literature. , 2002, Neuro-oncology.

[106]  N. Sang,et al.  Hypoxia-inducible Factor-1-mediated Expression of the 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) Gene , 2002, The Journal of Biological Chemistry.

[107]  P. Vaupel,et al.  Pyruvate kinase type M2: a crossroad in the tumor metabolome , 2002, British Journal of Nutrition.

[108]  Saroj P. Mathupala,et al.  Glucose Catabolism in Cancer Cells , 2001, The Journal of Biological Chemistry.

[109]  T. Yoshihara,et al.  Localization of Cytosolic NADP-dependent Isocitrate Dehydrogenase in the Peroxisomes of Rat Liver Cells , 2001, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[110]  M. Gorospe,et al.  Pharmacological inhibition of fatty acid synthase activity produces both cytostatic and cytotoxic effects modulated by p53. , 2001, Cancer research.

[111]  M. Guida,et al.  Paclitaxel, cisplatin and lonidamine in advanced ovarian cancer. A phase II study. , 2001, European journal of cancer.

[112]  M. Ducreux,et al.  A phase II study: docetaxel as first-line chemotherapy for advanced pancreatic adenocarcinoma. , 2000, European journal of cancer.

[113]  B. Geisbrecht,et al.  The Human PICD Gene Encodes a Cytoplasmic and Peroxisomal NADP+-dependent Isocitrate Dehydrogenase* , 1999, The Journal of Biological Chemistry.

[114]  Linet,et al.  RESPONSE: Re: Brain and Other Central Nervous System Cancers: Recent Trends in Incidence and Mortality. , 1999, Journal of the National Cancer Institute.

[115]  Richard A. Roth,et al.  Regulation of GLUT1 Gene Transcription by the Serine/Threonine Kinase Akt1* , 1999, The Journal of Biological Chemistry.

[116]  G. Semenza,et al.  Oncogenic alterations of metabolism. , 1999, Trends in biochemical sciences.

[117]  C. Prives,et al.  The p53 pathway , 1999, The Journal of pathology.

[118]  P. Ratcliffe,et al.  Hypoxia and the regulation of gene expression. , 1998, Molecular medicine today.

[119]  Saroj P. Mathupala,et al.  Glucose Catabolism in Cancer Cells , 1997, The Journal of Biological Chemistry.

[120]  D. Vertommen,et al.  Phosphorylation and Activation of Heart 6-Phosphofructo-2-kinase by Protein Kinase B and Other Protein Kinases of the Insulin Signaling Cascades* , 1997, The Journal of Biological Chemistry.

[121]  G. Semenza,et al.  Hypoxia Response Elements in the Aldolase A, Enolase 1, and Lactate Dehydrogenase A Gene Promoters Contain Essential Binding Sites for Hypoxia-inducible Factor 1* , 1996, The Journal of Biological Chemistry.

[122]  G. Semenza,et al.  Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. , 1994, The Journal of biological chemistry.

[123]  Z. Ram,et al.  Selective activity of phenylacetate against malignant gliomas: resemblance to fetal brain damage in phenylketonuria. , 1994, Cancer research.

[124]  Douglas C. Miller,et al.  A Correlative Study of p53 Protein Alteration and p53 Gene Mutation in Glioblastoma Multiforme , 1993, Brain pathology.

[125]  R. Haselbeck,et al.  Function and expression of yeast mitochondrial NAD- and NADP-specific isocitrate dehydrogenases. , 1993, The Journal of biological chemistry.

[126]  D. Lane,et al.  Regulation of the specific DNA binding function of p53 , 1992, Cell.

[127]  Bert Vogelstein,et al.  p53 function and dysfunction , 1992, Cell.

[128]  L. Strong,et al.  Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. , 1990, Science.

[129]  B. Vogelstein,et al.  A genetic model for colorectal tumorigenesis , 1990, Cell.

[130]  B. S. Winkler,et al.  Multiple NADPH-producing pathways control glutathione (GSH) content in retina. , 1986, Experimental eye research.

[131]  H. Rosenfeld,et al.  Enhancement of antitumor activity of glutamine antagonists 6-diazo-5-oxo-L-norleucine and acivicin in cell culture by glutaminase-asparaginase. , 1981, Cancer research.

[132]  E. Alexander,et al.  Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. , 1978, Journal of neurosurgery.

[133]  J. Fraumeni,et al.  Soft-tissue sarcomas, breast cancer, and other neoplasms. A familial syndrome? , 1969, Annals of internal medicine.

[134]  O. Warburg [Origin of cancer cells]. , 1956, Oncologia.

[135]  J. A. Robinson Clinics , 1883, The Dental register.

[136]  S. Marie,et al.  Mitochondrial DNA depletion and its correlation with TFAM, TFB1M, TFB2M and POLG in human diffusely infiltrating astrocytomas. , 2011, Mitochondrion.

[137]  G. Reifenberger,et al.  MGMT promoter methylation in malignant gliomas: ready for personalized medicine? , 2010, Nature Reviews Neurology.

[138]  J. Griffiths,et al.  The altered metabolism of tumors: HIF-1 and its role in the Warburg effect. , 2010, Advances in enzyme regulation.

[139]  Tsung-Cheng Chang,et al.  c-Myc suppression of miR-23 enhances mitochondrial glutaminase and glutamine metabolism , 2009, Nature.

[140]  F. Ducray,et al.  IDH1 and IDH2 mutations in gliomas. , 2009, The New England journal of medicine.

[141]  R. Deberardinis,et al.  The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. , 2008, Cell metabolism.

[142]  D. Louis WHO classification of tumours of the central nervous system , 2007 .

[143]  L. D.,et al.  Brain tumors , 2005, Psychiatric Quarterly.

[144]  P. Schubert,et al.  Mutations in the transketolase-like gene TKTL1: clinical implications for neurodegenerative diseases, diabetes and cancer. , 2005, Clinical laboratory.

[145]  M. Colombini VDAC: The channel at the interface between mitochondria and the cytosol , 2004, Molecular and Cellular Biochemistry.

[146]  B. Amir-Ahmady,et al.  Dietary regulation of expression of glucose-6-phosphate dehydrogenase. , 2001, Annual review of nutrition.

[147]  Y. Nakamura,et al.  Identification of seven genes regulated by wild-type p53 in a colon cancer cell line carrying a well-controlled wild-type p53 expression system. , 1999, Oncology research.

[148]  P. Huppert,et al.  Expression of hypoxia-inducible genes in tumor cells , 1998, Journal of Cancer Research and Clinical Oncology.

[149]  M. Hollstein,et al.  Clinical implications of the p53 gene. , 1996, Annual review of medicine.

[150]  E. Eigenbrodt,et al.  Double role for pyruvate kinase type M2 in the expansion of phosphometabolite pools found in tumor cells. , 1992, Critical reviews in oncogenesis.

[151]  N. Dubrawsky Cancer statistics , 1989, CA: a cancer journal for clinicians.