Exact computation of the medial axis of a polyhedron

We present an accurate algorithm to compute the internal Voronoi diagram and medial axis of a 3-D polyhedron. It uses exact arithmetic and exact representations for accurate computation of the medial axis. The algorithm works by recursively finding neighboring junctions along the seam curves. To speed up the computation, we have designed specialized algorithms for fast computation with algebraic curves and surfaces. These algorithms include lazy evaluation based on multivariate Sturm sequences, fast resultant computation, culling operations, and floating-point filters. The algorithm has been implemented and we highlight its performance on a number of examples.

[1]  Dinesh Manocha,et al.  Eecient and Accurate B-rep Generation of Low Degree Sculptured Solids Using Exact Arithmetic:i - Representations , 1999 .

[2]  Gershon Elber,et al.  The bisector surface of rational space curves , 1998, TOGS.

[3]  Ching-Shoei Chiang The Euclidean distance transform , 1992 .

[4]  Falai Chen,et al.  Implicitization using moving curves and surfaces , 1995, SIGGRAPH.

[5]  I. Shafarevich Basic algebraic geometry , 1974 .

[6]  J. Demmel,et al.  LAPACK: a portable linear algebra library for supercomputers , 1989, IEEE Control Systems Society Workshop on Computer-Aided Control System Design.

[7]  B. Donald,et al.  Symbolic and Numerical Computation for Artificial Intelligence , 1997 .

[8]  John K. Johnstone,et al.  Sorting Points Along an Algebraic Curve , 1990, SIAM J. Comput..

[9]  L. G. Lidia,et al.  A library for computational number theory , 1997 .

[10]  M. Overmars,et al.  Approximating generalized Voronoi diagrams in any dimension , 1995 .

[11]  Dinesh Manocha,et al.  PRECISE: efficient multiprecision evaluation of algebraic roots and predicates for reliable geometric computation , 2001, SCG '01.

[12]  Ari Rappoport,et al.  Computing the Voronoi diagram of a 3-D polyhedron by separate computation of its symbolic and geometric parts , 1999, SMA '99.

[13]  T. Sederberg Implicit and parametric curves and surfaces for computer aided geometric design , 1983 .

[14]  R. Brubaker Models for the perception of speech and visual form: Weiant Wathen-Dunn, ed.: Cambridge, Mass., The M.I.T. Press, I–X, 470 pages , 1968 .

[15]  Dinesh Manocha,et al.  Accurate computation of the medial axis of a polyhedron , 1999, SMA '99.

[16]  Paul Pedersen Multivariate Sturm Theory , 1991, AAECC.

[17]  I. Shafarevich,et al.  Basic algebraic geometry 1 (2nd, revised and expanded ed.) , 1994 .

[18]  Nicholas M. Patrikalakis,et al.  An Algorithm for the Medial Axis Transform of 3D Polyhedral Solids , 1996, IEEE Trans. Vis. Comput. Graph..

[19]  A. L. Dixon The Eliminant of the Equations of Four Quadric Surfaces , .

[20]  Micha Sharir,et al.  Computing envelopes in four dimensions with applications , 1994, SCG '94.

[21]  Christoph M. Hoffmann,et al.  How to Construct the Skeleton of CSG Objects , 1990 .

[22]  Martin Held,et al.  Voronoi diagrams and offset curves of curvilinear polygons , 1998, Comput. Aided Des..

[23]  Chandrajit L. Bajaj,et al.  Automatic parameterization of rational curves and surfaces III: Algebraic plane curves , 1988, Comput. Aided Geom. Des..

[24]  Damian J. Sheehy,et al.  Shape Description By Medial Surface Construction , 1996, IEEE Trans. Vis. Comput. Graph..

[25]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[26]  Steven Fortune,et al.  Polyhedral modelling with multiprecision integer arithmetic , 1997, Comput. Aided Des..

[27]  Dinesh Manocha,et al.  MAPC: a library for efficient and exact manipulation of algebraic points and curves , 1999, SCG '99.

[28]  Joseph F. Traub,et al.  On Euclid's Algorithm and the Theory of Subresultants , 1971, JACM.

[29]  James H. Davenport,et al.  Computer Algebra: Systems and Algorithms for Algebraic Computation , 1988 .

[30]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[31]  Ketan Mulmuley,et al.  Computational geometry : an introduction through randomized algorithms , 1993 .

[32]  D. T. Lee,et al.  Medial Axis Transformation of a Planar Shape , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Dinesh Manocha,et al.  Computing the medial axis of a polyhedron reliably and efficiently , 2000 .

[34]  F. S. Macaulay Some Formulæ in Elimination , 1902 .

[35]  Dinesh Manocha,et al.  A Hybrid Approach for Determinant Signs of Moderate-Sized Matrices , 2003, Int. J. Comput. Geom. Appl..

[36]  L. Nackman,et al.  Automatic mesh generation using the symmetric axis transformation of polygonal domains , 1992, Proc. IEEE.

[37]  Martin Held,et al.  On Computing Voronoi Diagrams of Convex Polyhedra by Means of Wavefront Propagation , 1994, CCCG.

[38]  Gene H. Golub,et al.  Matrix computations , 1983 .

[39]  George M. Turkiyyah,et al.  Computation of 3D skeletons using a generalized Delaunay triangulation technique , 1995, Comput. Aided Des..

[40]  Victor J. Milenkovic,et al.  Robust Construction of the Voronoi Diagram of a Polyhedron , 1993, CCCG.