Dynamics of Kinematic Chains

In this article we derive the equations of motion of a kinematic chain using concepts naturally associated with the special euclidean group. A simple and coordinate-free formula for the kinetic energy of a rigid body is used to express the kinetic energy of an open chain. From this, the dynamical equations in the Lagrangian form follow easily. The structure of the equations of motion is sufficiently transparent so that one may gain insight into nontrivial problems involving analysis and design. We illustrate the applicability of this formalism by investigating the design of manipulators with configuration- independent and separable kinetic energy.

[1]  F. Park Computational aspects of the product-of-exponentials formula for robot kinematics , 1994, IEEE Trans. Autom. Control..

[2]  J. Michael McCarthy,et al.  Introduction to theoretical kinematics , 1990 .

[3]  Frank Chongwoo Park,et al.  A geometrical formulation of the dynamical equations describing kinematic chains , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[4]  P. Krishnaprasad Geometric Phases, and Optimal Reconfiguration for Multibody Systems , 1990, 1990 American Control Conference.

[5]  Roger W. Brockett,et al.  Robotic manipulators and the product of exponentials formula , 1984 .

[6]  Tudor S. Ratiu,et al.  Euler-Poisson equations on Lie algebras and the N-dimensional heavy rigid body , 1981 .

[7]  S. Shankar Sastry,et al.  Optimal Kinematic Design of 6R Manipulators , 1988, Int. J. Robotics Res..

[8]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[9]  John Baillieul,et al.  Constrained relative motions in rotational mechanics , 1991 .

[10]  Ann Westagard Stokes Geometric methods for the design of mechanisms , 1993 .

[11]  H. Harry Asada,et al.  The design of open-loop manipulator arms with decoupled and configuration-invariant inertia tensors , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[12]  O. I. Bogoyavlenskij,et al.  General integrable problems of classical mechanics , 1993 .

[13]  Roger W. Brockett,et al.  Kinematic Dexterity of Robotic Mechanisms , 1994, Int. J. Robotics Res..

[14]  M. Sain Finite dimensional linear systems , 1972 .

[15]  Ralph Abraham,et al.  Foundations Of Mechanics , 2019 .

[16]  H. Harry Asada,et al.  The Design of Open-Loop Manipulator Arms With Decoupled and Configuration-Invariant Inertia Tensors , 1987 .

[17]  Anatoliĭ Timofeevich Fomenko,et al.  Integrability of Euler Equations on Semisimple Lie Algebras , 1982 .

[18]  J. M. Selig Applying screw theory to robot dynamics , 1991 .

[19]  J. Baillieul The Behavior of Super-Articulated Mechanisms Subject to Periodic Forcing , 1991 .

[20]  Hanqi Zhuang,et al.  A complete and parametrically continuous kinematic model for robot manipulators , 1990, Proceedings., IEEE International Conference on Robotics and Automation.