Trace Element Signatures in Pyrite and Marcasite From Shallow Marine Island Arc-Related Hydrothermal Vents, Calypso Vents, New Zealand, and Paleochori Bay, Greece

Fluid conditions of shallow marine hydrothermal vent sites (<200 mbsl) in island arcs resemble those of subaerial epithermal systems. This leads to a distinct mineralization-style compared to deeper arc/back-arc (>200 mbsl) and mid-ocean ridge-related environments (>2000 mbsl). At Calypso Vents in the Bay of Plenty and Paleochori Bay at the coast of Milos Island, fluids with temperatures <200°C are emitted through volcaniclastic sediments in water depths <200 mbsl. The hydrothermal mineralization from these fluids is dominated by pyrite and marcasite showing diverse textures, including colloform alternations, semi-massive occurrences surrounding detrital grains, vein-type pyrite, and disseminated fine-grained assemblages. Pyrite and marcasite from Calypso SE show elevated concentrations of volatile elements (e.g., As, Sb, Tl, Hg) implying a vapor-rich fluid phase. By contrast, elements like Zn, Ag, and Pb are enriched in hydrothermal pyrite and marcasite from Calypso SW, indicating a high-Cl liquid-dominated fluid discharge. Hence, vapor-liquid element fractionation induced by fluid boiling is preserved in the seafloor mineralization at Calypso Vents. Hydrothermal mineralization at very shallow vent sites (<10 mbsl), like Paleochori Bay, are affected by wave action causing a seasonal migration of the seawater-fluid interface in the sediment cover. The δ34S composition of native S crusts and crystalline S (0.7–6.7‰) is indicative for host rock leaching and thermochemical reduction of seawater sulphate. By contrast, the highly negative δ34S signature of native S globules in sediments (−7.6 to −9.1‰) is related to microbial sulphate reduction or a subordinate magmatic fluid influx. Alunite-jarosite alteration (Paleochori Bay) and a mineral assemblage consisting of orpiment, realgar, and native S (Calypso Vents) may also suggest a contribution by an oxidised (sulphate-rich) low pH fluid of potential magmatic origin. However, fluid boiling is pervasive at Calypso Vents and Paleochori Bay, and the condensation of vapor-rich fluids in a steam-heated environment may produce a similar alteration and mineralization assemblage without a significant magmatic fluid influx, as known from some subaerial epithermal systems.

[1]  K. Haase,et al.  Arsenian Pyrite and Cinnabar from Active Submarine Nearshore Vents, Paleochori Bay, Milos Island, Greece , 2020, Minerals.

[2]  C. D. de Ronde,et al.  Subcritical Phase Separation and Occurrence of Deep-Seated Brines at the NW Caldera Vent Field, Brothers Volcano: Evidence from Fluid Inclusions in Hydrothermal Precipitates , 2020 .

[3]  T. Barry,et al.  Pyrite chemistry: A new window into Au-Te ore-forming processes in alkaline epithermal districts, Cripple Creek, Colorado , 2020 .

[4]  Andrew J. Martin,et al.  Effects of magmatic volatile influx in mafic VMS hydrothermal systems: Evidence from the Troodos ophiolite, Cyprus , 2020 .

[5]  M. Tivey,et al.  Trace element proxies of seafloor hydrothermal fluids based on secondary ion mass spectrometry (SIMS) of black smoker chimney linings , 2020, Geochimica et Cosmochimica Acta.

[6]  A. Koschinsky,et al.  Geochemical characterization of highly diverse hydrothermal fluids from volcanic vent systems of the Kermadec intraoceanic arc , 2019 .

[7]  M. Hannington,et al.  Divining gold in seafloor polymetallic massive sulfide systems , 2019, Mineralium Deposita.

[8]  T. Pichler,et al.  Geochemistry of hot-springs at the SuSu Knolls hydrothermal field, Eastern Manus Basin: Advanced argillic alteration and vent fluid acidity , 2019, Geochimica et Cosmochimica Acta.

[9]  D. Teagle,et al.  Metal fluxes during magmatic degassing in the oceanic crust: sulfide mineralisation at ODP site 786B, Izu-Bonin forearc , 2019, Mineralium Deposita.

[10]  S. Humphris,et al.  Critical role of caldera collapse in the formation of seafloor mineralization: The case of Brothers volcano , 2019, Geology.

[11]  D. Garbe‐Schönberg,et al.  Volatile Chalcophile Elements in Native Sulfur from a Submarine Hydrothermal System at Kueishantao, Offshore NE Taiwan , 2019, Minerals.

[12]  K. Haase,et al.  Porphyry and epithermal deposits in Greece: An overview, new discoveries, and mineralogical constraints on their genesis , 2019, Ore Geology Reviews.

[13]  Andrew J. Martin,et al.  Trace element systematics and ore-forming processes in mafic VMS deposits: Evidence from the Troodos ophiolite, Cyprus , 2019, Ore Geology Reviews.

[14]  D. Morata,et al.  Geochemical and micro-textural fingerprints of boiling in pyrite , 2019, Geochimica et Cosmochimica Acta.

[15]  J. Amend,et al.  Spatially and temporally variable sulfur cycling in shallow-sea hydrothermal vents, Milos, Greece , 2019, Marine Chemistry.

[16]  S. Petersen,et al.  Trace Metal Distribution in Sulfide Minerals from Ultramafic-Hosted Hydrothermal Systems: Examples from the Kairei Vent Field, Central Indian Ridge , 2018, Minerals.

[17]  M. Hannington,et al.  Constraints on the behavior of trace elements in the actively-forming TAG deposit, Mid-Atlantic Ridge, based on LA-ICP-MS analyses of pyrite , 2018, Chemical Geology.

[18]  J. Naden,et al.  Mass wasting events and their impact on the formation and preservation of submarine ore deposits , 2018, Ore Geology Reviews.

[19]  K. Haase,et al.  Constraints on the source of Cu in a submarine magmatic-hydrothermal system, Brothers volcano, Kermadec island arc , 2018, Contributions to Mineralogy and Petrology.

[20]  S. Humphris,et al.  Progress in Deciphering the Controls on the Geochemistry of Fluids in Seafloor Hydrothermal Systems. , 2018, Annual review of marine science.

[21]  C. D. de Ronde,et al.  Hydrothermal Venting at Hinepuia Submarine Volcano, Kermadec Arc: Understanding Magmatic‐Hydrothermal Fluid Chemistry , 2017 .

[22]  G. Jenkin,et al.  A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore-forming processes , 2017 .

[23]  J. Lupton,et al.  Boiling vapour-type fluids from the Nifonea vent field (New Hebrides Back-Arc, Vanuatu, SW Pacific): Geochemistry of an early-stage, post-eruptive hydrothermal system , 2017 .

[24]  D. Teagle,et al.  Hydrothermal mobilisation of Au and other metals in supra-subduction oceanic crust: Insights from the Troodos ophiolite , 2017 .

[25]  M. Reich,et al.  Copper-arsenic decoupling in an active geothermal system: A link between pyrite and fluid composition , 2017 .

[26]  R. Large,et al.  Chimneys in Paleozoic massive sulfide mounds of the Urals VMS deposits: mineral and trace element comparison with modern black, grey, white and clear smokers , 2017 .

[27]  S. Petersen,et al.  Mineralogy and trace element geochemistry of sulfide minerals from the Wocan Hydrothermal Field on the slow-spreading Carlsberg Ridge, Indian Ocean , 2017 .

[28]  M. Hannington,et al.  Subsea mining moves closer to shore , 2017 .

[29]  K. Haase,et al.  Systematic variations in magmatic sulphide chemistry from mid-ocean ridges, back-arc basins and island arcs , 2017 .

[30]  J. Brugger,et al.  A review of the coordination chemistry of hydrothermal systems, or do coordination changes make ore deposits? , 2016 .

[31]  Huifang Xu,et al.  Occurrences and distribution of “invisible” precious metals in sulfide deposits from the Edmond hydrothermal field, Central Indian Ridge , 2016 .

[32]  M. Reich,et al.  Constraints on the solid solubility of Hg, Tl, and Cd in arsenian pyrite , 2016 .

[33]  K. Haase,et al.  Systematic variations of trace element and sulfur isotope compositions in pyrite with stratigraphic depth in the Skouriotissa volcanic-hosted massive sulfide deposit, Troodos ophiolite, Cyprus , 2016 .

[34]  Y. Kato,et al.  Rapid growth of mineral deposits at artificial seafloor hydrothermal vents , 2016, Scientific Reports.

[35]  Sven Petersen,et al.  Hydrothermal exploration of mid-ocean ridges: Where might the largest sulfide deposits be forming? , 2016 .

[36]  T. Pichler,et al.  Submarine venting of magmatic volatiles in the Eastern Manus Basin, Papua New Guinea , 2015 .

[37]  A. Koschinsky,et al.  Organic Cu-complexation at the shallow marine hydrothermal vent fields off the coast of Milos (Greece), Dominica (Lesser Antilles) and the Bay of Plenty (New Zealand) , 2015 .

[38]  A. Solow,et al.  Identification of sulfur sources and isotopic equilibria in submarine hot-springs using multiple sulfur isotopes , 2015 .

[39]  S. Petersen,et al.  Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides : an in-situ LA-ICP-MS study , 2015 .

[40]  M. Hannington,et al.  Drilling shallow water massive sulfides at the Palinuro Volcanic Complex, Aeolian Island Arc, Italy , 2014 .

[41]  R. Large,et al.  Mineralogy and trace-element geochemistry of sulfide minerals in hydrothermal chimneys from the Upper-Cretaceous VMS deposits of the eastern Pontide orogenic belt (NE Turkey) , 2014 .

[42]  R. Binns,et al.  The SuSu Knolls Hydrothermal Field, Eastern Manus Basin, Papua New Guinea: An Active Submarine High-Sulfidation Copper-Gold System , 2014 .

[43]  Thomas Monecke,et al.  Constraints on Water Depth of Massive Sulfide Formation: Evidence from Modern Seafloor Hydrothermal Systems in Arc-Related Settings , 2014 .

[44]  K. Haase,et al.  Effects of temperature, sulfur, and oxygen fugacity on the composition of sphalerite from submarine hydrothermal vents , 2014 .

[45]  R. Large,et al.  Barite-rich massive sulfides from the Semenov-1 hydrothermal field (Mid-Atlantic Ridge, 13°30.87′ N): Evidence for phase separation and magmatic input , 2014 .

[46]  C. Vetriani,et al.  Eco-geochemical dynamics of a shallow-water hydrothermal vent system at Milos Island, Aegean Sea (Eastern Mediterranean) , 2013 .

[47]  P. Spry,et al.  Shallow submarine epithermal Pb–Zn–Cu–Au–Ag–Te mineralization on western Milos Island, Aegean Volcanic Arc, Greece: Mineralogical, geological and geochemical constraints , 2013 .

[48]  T. Pichler,et al.  Processes influencing extreme As enrichment in shallow-sea hydrothermal fluids of Milos Island, Greece , 2013 .

[49]  T. Pichler,et al.  Arsenic in marine hydrothermal fluids , 2013 .

[50]  J. Charlou,et al.  Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization: A new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit , 2013 .

[51]  W. Seyfried,et al.  Phase Equilibria in Subseafloor Hydrothermal Systems: a Review of the Role of Redox, Temperature, Ph and Dissolved Cl on the Chemistry of Hot Spring Fluids at Mid‐Ocean Ridges , 2013 .

[52]  J. Gemmell,et al.  Mineralogy and Formation of Black Smoker Chimneys from Brothers Submarine Volcano, Kermadec Arc , 2012 .

[53]  G. Massoth,et al.  Submarine hydrothermal activity and gold-rich mineralization at Brothers Volcano, Kermadec Arc, New Zealand , 2011 .

[54]  S. Petersen,et al.  Hydrothermalism in the Tyrrhenian Sea: inorganic and microbial sulfur cycling as revealed by geochemical and multiple sulfur isotope data , 2011 .

[55]  J. Mavrogenes,et al.  The Magnetite Crisis in the Evolution of Arc-related Magmas and the Initial Concentration of Au, Ag and Cu , 2010 .

[56]  W. Skinner,et al.  An experimental study of the mechanism of the replacement of magnetite by pyrite up to 300 °C , 2010 .

[57]  P. Stoffers,et al.  Clay alteration of volcaniclastic material in a submarine geothermal system, Bay of Plenty, New Zealand , 2010 .

[58]  U. Tsunogai,et al.  Diverse Range of Mineralization Induced by Phase Separation of Hydrothermal Fluid: Case Study of the Yonaguni Knoll IV Hydrothermal Field in the Okinawa Trough Back‐Arc Basin , 2008 .

[59]  Y. Xiong Hydrothermal thallium mineralization up to 300 °C: A thermodynamic approach , 2007 .

[60]  O. Rouxel,et al.  S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides , 2007 .

[61]  M. Tivey Generation of seafloor hydrothermal vent fluids and associated mineral deposits , 2007 .

[62]  G. Massoth,et al.  Submarine Hydrothermal Activity and Gold-Rich Mineralization at Brothers Volcano, Southern Kermadec Arc, New Zealand , 2006 .

[63]  G. Massoth,et al.  Submarine volcanoes and high-temperature hydrothermal venting on the Tonga arc, southwest Pacific , 2006 .

[64]  M. Reich,et al.  First-principles calculations of the thermodynamic mixing properties of arsenic incorporation into pyrite and marcasite , 2006 .

[65]  Yueh-Yuan Tu,et al.  Tide-influenced acidic hydrothermal system offshore NE Taiwan , 2005 .

[66]  R. M. Prol-Ledesma,et al.  Mn–Ba–Hg mineralization at shallow submarine hydrothermal vents in Bahía Concepción, Baja California Sur, Mexico , 2005 .

[67]  D. Cronan,et al.  Submarine hydrothermal activity off santorini and milos in the central hellenic volcanic arc : A synthesis , 2005 .

[68]  Eugenia Valsami-Jones,et al.  The geochemistry of fluids from an active shallow submarine hydrothermal system: Milos island, Hellenic Volcanic Arc , 2005 .

[69]  J. Naden,et al.  Active geothermal systems with entrained seawater as modern analogs for transitional volcanic-hosted massive sulfide and continental magmato-hydrothermal mineralization: The example of Milos Island, Greece , 2005 .

[70]  Jonguk Kim,et al.  S, Sr, and Pb isotopic systematics of hydrothermal chimney precipitates from the Eastern Manus Basin, western Pacific: Evaluation of magmatic contribution to hydrothermal system , 2004 .

[71]  A. Kopf,et al.  The Mediterranean Ridge: A mass balance across the fastest growing accretionary complex on Earth , 2003 .

[72]  R. M. Prol-Ledesma,et al.  Sulfur isotope geochemistry of the submarine hydrothermalcoastal vents of Punta Mita, Mexico , 2003 .

[73]  C. D. de Ronde,et al.  Hydrothermal fluids associated with seafloor mineralization at two southern Kermadec arc volcanoes, offshore New Zealand , 2003 .

[74]  R. M. Prol-Ledesma,et al.  CINNABAR DEPOSITION IN SUBMARINE COASTAL HYDROTHERMAL VENTS, PACIFIC MARGIN OF CENTRAL MEXICO , 2002 .

[75]  P. Stoffers,et al.  Discovery of active hydrothermal venting in Lake Taupo, New Zealand , 2002 .

[76]  P. Stoffers,et al.  Thermogenic hydrocarbons from the offshore Calypso hydrothermal field, Bay of Plenty, New Zealand , 2002 .

[77]  S. Simmons,et al.  Hydrothermal Minerals and Precious Metals in the Broadlands-Ohaaki Geothermal System: Implications for Understanding Low-Sulfidation Epithermal Environments , 2000 .

[78]  P. Filzmoser,et al.  Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data , 2000 .

[79]  J. Trefry,et al.  Chemical and mineralogical influences on concentrations of trace metals in hydrothermal fluids , 2000 .

[80]  M. Kusakabe,et al.  Sulfur isotopic effects in the disproportionation reaction of sulfur dioxide in hydrothermal fluids: implications for the δ 34 S variations of dissolved bisulfate and elemental sulfur from active crater lakes , 2000 .

[81]  I. Wright,et al.  Elemental mercury at submarine hydrothermal vents in the Bay of Plenty, Taupo volcanic zone, New Zealand , 1999 .

[82]  K. Hattori,et al.  Seafloor hydrothermal clay alteration at Jade in the back-arc Okinawa trough: Mineralogy, geochemistry and isotope characteristics , 1999 .

[83]  J. Penner‐Hahn,et al.  Oxidation state of gold and arsenic in gold-bearing arsenian pyrite , 1999 .

[84]  T. Pichler,et al.  Fe sulfide formation due to seawater-gas-sediment interaction in a shallow-water hydrothermal system at Lihir Island, Papua New Guinea , 1999 .

[85]  M. Hannington,et al.  Sulfur isotopic composition of hydrothermal precipitates from the Lau back-arc: implications for magmatic contributions to seafloor hydrothermal systems , 1998 .

[86]  Kaihui Yang,et al.  Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system , 1996, Nature.

[87]  F. Davey,et al.  Asymmetric rifting in a continental back-arc environment, North Island, New Zealand , 1995 .

[88]  Michael McWilliams,et al.  Volcanic and structural evolution of Taupo Volcanic Zone, New Zealand: a review , 1995 .

[89]  J. Lowenstern,et al.  The role of magmas in the formation of hydrothermal ore deposits , 1994, Nature.

[90]  P. Herzig,et al.  Metallogenesis in back-arc environments; the Lau Basin example , 1993 .

[91]  R. Binns,et al.  Actively forming polymetallic sulfide deposits associated with felsic volcanic rocks in the eastern Manus back-arc basin, Papua New Guinea , 1993 .

[92]  W. Giggenbach,et al.  White Island, New Zealand, volcanic-hydrothermal system represents the geochemical environment of high-sulfidation Cu and Au ore deposition , 1993 .

[93]  I. Wright Late Quaternary faulting of the offshore Whakatane Graben, Taupo Volcanic Zone, New Zealand , 1990 .

[94]  H. Barnes,et al.  Marcasite precipitation from hydrothermal solutions , 1986 .

[95]  F. Innocenti,et al.  Volcanology and petrology of volcanic products from the island of Milos and neighbouring islets , 1986 .

[96]  S. E. Drummond,et al.  Chemical evolution and mineral deposition in boiling hydrothermal systems , 1985 .

[97]  P. Rona,et al.  The TAG hydrothermal field , 1974, Nature.

[98]  F. Chu,et al.  Trace element and sulfur isotope compositions for pyrite across the mineralization zones of a sulfide chimney from the East Pacific Rise (1-2°S) , 2020 .

[99]  M. Hannington,et al.  Boiling-induced formation of colloidal gold in black smoker hydrothermal fluids , 2018 .

[100]  M. Hannington,et al.  The minor element endowment of modern sea-floor massive sulfide deposits and comparison with deposits hosted in ancient volcanic successions , 2016 .

[101]  A. Williams-Jones,et al.  The Chemistry of Metal Transport and Deposition by Ore-Forming Hydrothermal Fluids , 2014 .

[102]  G. Pokrovski,et al.  Speciation and Transport of Metals and Metalloids in Geological Vapors , 2013 .

[103]  K. Haase,et al.  Trace element systematics of pyrite from submarine hydrothermal vents , 2013 .

[104]  S. Simmons,et al.  Geological characteristics of epithermal precious and base metal deposits , 2005 .

[105]  M. Hannington,et al.  Sea-floor tectonics and submarine hydrothermal systems , 2005 .

[106]  M. Einaudi,et al.  Sulfidation State of Fluids in Active and Extinct Hydrothermal Systems: Transitions from Porphyry to Epithermal Environments , 2003 .

[107]  J. Naden,et al.  Epithermal gold mineralisation in the active Aegean Volcanic Arc: the Profitis Ilias deposit, Milos Island, Greece , 2001 .

[108]  W. Shanks Stable Isotopes in Seafloor Hydrothermal Systems: Vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes , 2001 .

[109]  D. Cooke,et al.  Epithermal Au-Ag-Te Mineralization, Acupan, Baguio District, Philippines: Numerical Simulations of Mineral Deposition , 2001 .

[110]  Susan E. Humphris,et al.  Seafloor hydrothermal systems : physical, chemical, biological, and geological interactions , 1995 .

[111]  P. Buseck,et al.  The speciation of mercury in hydrothermal systems, with applications to ore deposition , 1984 .

[112]  S. Sylva,et al.  Virtual Commons - Bridgewater State University Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea , 2022 .