Nonorthogonal orbital based N-body reduced density matrices and their applications to valence bond theory. II. An efficient algorithm for matrix elements and analytical energy gradients in VBSCF method.

In this paper, by applying the reduced density matrix (RDM) approach for nonorthogonal orbitals developed in the first paper of this series, efficient algorithms for matrix elements between VB structures and energy gradients in valence bond self-consistent field (VBSCF) method were presented. Both algorithms scale only as nm(4) for integral transformation and d(2)n(β)(2) for VB matrix elements and 3-RDM evaluation, while the computational costs of other procedures are negligible, where n, m, d, and n(β )are the numbers of variable occupied active orbitals, basis functions, determinants, and active β electrons, respectively. Using tensor properties of the energy gradients with respect to the orbital coefficients presented in the first paper of this series, a partial orthogonal auxiliary orbital set was introduced to reduce the computational cost of VBSCF calculation in which orbitals are flexibly defined. Test calculations on the Diels-Alder reaction of butadiene and ethylene have shown that the novel algorithm is very efficient for VBSCF calculations.

[1]  R. Mcweeny,et al.  A spin‐free form of valence bond theory , 1988 .

[2]  Kendall N. Houk,et al.  Pericyclic Reaction Transition States: Passions and Punctilios, 1935-1995 , 1995 .

[3]  Sason Shaik,et al.  Classical valence bond approach by modern methods. , 2011, Chemical reviews.

[4]  Wei Wu,et al.  An efficient algorithm for energy gradients and orbital optimization in valence bond theory , 2009, J. Comput. Chem..

[5]  Donald G Truhlar,et al.  VBSM: a solvation model based on valence bond theory. , 2008, The journal of physical chemistry. A.

[6]  J. H. van Lenthe,et al.  The valence-bond scf (VB SCF) method.: Synopsis of theory and test calculation of oh potential energy curve , 1980 .

[7]  Wei Wu,et al.  XMVB : A program for ab initio nonorthogonal valence bond computations , 2005, J. Comput. Chem..

[8]  W. Goddard,et al.  Generalized valence bond description of bonding in low-lying states of molecules , 1973 .

[9]  Wei Wu,et al.  DFVB: A Density-Functional-Based Valence Bond Method. , 2012, Journal of chemical theory and computation.

[10]  Wei Wu,et al.  A new algorithm for inactive orbital optimization in valence bond theory , 2009 .

[11]  David L. Cooper,et al.  Modern valence bond representations of CASSCF wavefunctions , 1996 .

[12]  S. Sakai Theoretical Analysis of Concerted and Stepwise Mechanisms of Diels−Alder Reaction between Butadiene and Ethylene , 2000 .

[13]  David L. Cooper,et al.  Applications of spin-coupled valence bond theory , 1991 .

[14]  Martin J. Field,et al.  MC−SCF study of the Diels-Alder reaction between ethylene and butadiene , 1988 .

[15]  HAJIME HIRAO,et al.  A reactive bond orbital investigation of the Diels‐Alder reaction between 1,3‐butadiene and ethylene: Energy decomposition, state correlation diagram, and electron density analyses , 2008, J. Comput. Chem..

[16]  Zexing Cao,et al.  Chapter 6 - A spin–free approach for valence bond theory and its applications , 2002 .

[17]  Peifeng Su,et al.  VBEFP: a valence bond approach that incorporates effective fragment potential method. , 2012, The journal of physical chemistry. A.

[18]  J. R. Collins,et al.  Practical Valence-Bond Calculations , 1982 .

[19]  Debashis Mukherjee,et al.  Normal ordering and a Wick-like reduction theorem for fermions with respect to a multi-determinantal reference state , 1997 .

[20]  Björn O. Roos,et al.  The complete active space SCF method in a fock‐matrix‐based super‐CI formulation , 2009 .

[21]  Wlodzislaw Duch,et al.  Graphical representation of Salter determinants , 1985 .

[22]  J. Stewart,et al.  Mechanism of the Diels-Alder reaction: reactions of butadiene with ethylene and cyanoethylenes. , 1986, Journal of the American Chemical Society.

[23]  D. Cremer,et al.  Mechanism of the Diels-Alder reaction studied with the united reaction valley approach: Mechanistic differences between symmetry-allowed and symmetry-forbidden reactions , 2003 .

[24]  D. Rowley,et al.  Kinetics of diene reactions at high temperatures , 1951 .

[25]  D. L. Cooper,et al.  Modern Valence-Bond Description of Chemical Reaction Mechanisms: Diels−Alder Reaction , 1998 .

[26]  Sason Shaik,et al.  Valence bond configuration interaction: A practical ab initio valence bond method that incorporates dynamic correlation , 2002 .

[27]  Philippe C. Hiberty,et al.  Compact and accurate valence bond functions with different orbitals for different configurations: application to the two-configuration description of F2 , 1992 .

[28]  F. London,et al.  Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik , 1927 .

[29]  A. Zewail,et al.  Femtosecond dynamics of retro Diels-Alder reactions: The concept of concertedness , 1999 .

[30]  Ernest R. Davidson,et al.  The Importance of Including Dynamic Electron Correlation in ab initio Calculations , 1996 .

[31]  O. Diels,et al.  Synthesen in der hydroaromatischen Reihe, IV. Mitteilung: Über die Anlagerung von Maleinsäure‐anhydrid an arylierte Diene, Triene und Fulvene (Mitbearbeitet von Paul Pries) , 1929 .

[32]  Bernard Levy,et al.  Generalized brillouin theorem for multiconfigurational SCF theories , 1968 .

[33]  K. Houk,et al.  Evidence for the concerted mechanism of the Diels-Alder reaction of butadiene with ethylene. , 1986, Journal of the American Chemical Society.

[34]  Peifeng Su,et al.  Ab initio nonorthogonal valence bond methods , 2013 .

[35]  Chun Huang,et al.  Dual-Level Direct Dynamics Study on the Diels−Alder Reaction of Ethylene and 1,3-Butadiene , 2001 .

[36]  Anan Wu,et al.  Efficient algorithm for the spin-free valence bond theory. I. New strategy and primary expressions , 1998 .

[37]  Yuchun Lin,et al.  Block-localized wavefunction (BLW) method at the density functional theory (DFT) level. , 2007, The journal of physical chemistry. A.

[38]  Kendall N. Houk,et al.  Quantum Mechanical Methods and the Interpretation and Prediction of Pericyclic Reaction Mechanisms , 1997 .

[39]  Debashis Mukherjee,et al.  Normal order and extended Wick theorem for a multiconfiguration reference wave function , 1997 .

[40]  Zhang Qianer,et al.  BONDED TABLEAU METHOD FOR MANY-ELECTRON SYSTEMS , 1989 .

[41]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[42]  W. Roth,et al.  Verbotene Reaktionen. — [2 + 2]-Cycloreversion starrer Cyclobutane , 1988 .

[43]  Wei Wu,et al.  A practical valence bond method: A configuration interaction method approach with perturbation theoretic facility , 2004, J. Comput. Chem..

[44]  F. O. Ellison A Method of Diatomics in Molecules. I. General Theory and Application to H2O , 1963 .

[45]  Expansion of molecular orbital wave functions into valence bond wave functions. A simplified procedure , 1978 .

[46]  Wei Wu,et al.  An efficient algorithm for complete active space valence bond self‐consistent field calculation , 2013, J. Comput. Chem..

[47]  G. G. Hall The molecular orbital theory of chemical valency. VI. Properties of equivalent orbitals , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[48]  Sason Shaik,et al.  Valence bond perturbation theory. A valence bond method that incorporates perturbation theory. , 2009, The journal of physical chemistry. A.

[49]  K. Fukui Formulation of the reaction coordinate , 1970 .

[50]  H. Lischka,et al.  The Diels-Alder reaction of ethene and 1,3-butadiene: an extended multireference ab initio investigation. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[51]  Roald Hoffmann,et al.  Die Erhaltung der Orbitalsymmetrie , 1969 .

[52]  K. Houk,et al.  Theoretical Secondary Kinetic Isotope Effects and the Interpretation of Transition State Geometries. 2. The Diels-Alder Reaction Transition State Geometry , 1994 .

[53]  B. H. Chirgwin,et al.  The electronic structure of conjugated systems. VI , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[54]  K. Houk,et al.  Extended Hartree—Fock (EHF) theory of chemical reactions VI: hybrid DFT and post-Hartree—Fock approaches for concerted and non-concerted transition structures of the Diels—Alder reaction , 2002 .

[55]  Jeppe Olsen,et al.  Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces , 1988 .

[56]  M. Solà,et al.  An analysis of the changes in aromaticity and planarity along the reaction path of the simplest Diels–Alder reaction. Exploring the validity of different indicators of aromaticity , 2005 .

[57]  O. Diels,et al.  Synthesen in der hydroaromatischen Reihe. III. Mitteilung: Synthese von Terpenen, Camphern, hydroaromatischen und heterocyclischen Systemen. Mitbearbeitet von den Herren Wolfgang Lübbert, Erich Naujoks, Franz Querberitz, Karl Röhl, Harro Segeberg , 1929 .

[58]  Otto Diels,et al.  Synthesen in der hydroaromatischen Reihe , 1928 .

[59]  K. Fukui The path of chemical reactions - the IRC approach , 1981 .

[60]  Wei Wu,et al.  Nonorthogonal orbital based N-body reduced density matrices and their applications to valence bond theory. I. Hamiltonian matrix elements between internally contracted excited valence bond wave functions. , 2013, The Journal of chemical physics.

[61]  P. Löwdin Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction , 1955 .

[62]  K. Houk,et al.  Systematic Comparisons between Broken Symmetry and Symmetry-Adapted Approaches to Transition States by Chemical Indices: A Case Study of the Diels−Alder Reactions† , 2003 .

[63]  John C. Slater,et al.  Cohesion in Monovalent Metals , 1930 .

[64]  Sten Rettrup,et al.  Alternative graphical representation of determinantal many‐electron states , 2006 .

[65]  K. Houk,et al.  Diels-Alder dimerization of 1,3-butadiene: an ab initio CASSCF study of the concerted and stepwise mechanisms and butadiene-ethylene revisited , 1993 .

[66]  Sason Shaik,et al.  VBPCM: A Valence Bond Method that Incorporates a Polarizable Continuum Model , 2004 .

[67]  W. Goddard,et al.  The Self-Consistent Field Equations for Generalized Valence Bond and Open-Shell Hartree—Fock Wave Functions , 1977 .

[68]  T. Tomioka,et al.  Thermal Decomposition of Cyclohexene , 1964 .

[69]  K. Houk,et al.  Density Functional Theory Prediction of the Relative Energies and Isotope Effects for the Concerted and Stepwise Mechanisms of the Diels−Alder Reaction of Butadiene and Ethylene , 1996 .

[70]  J. H. van Lenthe,et al.  The valence‐bond self‐consistent field method (VB–SCF): Theory and test calculations , 1983 .

[71]  Peter J. Knowles,et al.  A new determinant-based full configuration interaction method , 1984 .