Approximate inference for the loss-calibrated Bayesian
暂无分享,去创建一个
Zoubin Ghahramani | Ferenc Huszar | Simon Lacoste-Julien | Zoubin Ghahramani | S. Lacoste-Julien | Ferenc Huszár | Simon Lacoste-Julien
[1] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[2] J. Berger. Statistical Decision Theory and Bayesian Analysis , 1988 .
[3] Christian P. Robert,et al. The Bayesian choice , 1994 .
[4] M. Schervish. Theory of Statistics , 1995 .
[5] Tommi S. Jaakkola,et al. Maximum Entropy Discrimination , 1999, NIPS.
[6] Tom Minka,et al. A family of algorithms for approximate Bayesian inference , 2001 .
[7] L. Csató. Gaussian processes:iterative sparse approximations , 2002 .
[8] Michael I. Jordan,et al. An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.
[9] Michael I. Jordan,et al. Factorial Hidden Markov Models , 1995, Machine Learning.
[10] Carl E. Rasmussen,et al. A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..
[11] Michael I. Jordan,et al. Convexity, Classification, and Risk Bounds , 2006 .
[12] Gökhan BakIr,et al. Predicting Structured Data , 2008 .
[13] Klaus-Robert Müller,et al. Covariate Shift Adaptation by Importance Weighted Cross Validation , 2007, J. Mach. Learn. Res..
[14] Edward Lloyd Snelson,et al. Flexible and efficient Gaussian process models for machine learning , 2007 .
[15] Andreas Christmann,et al. Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.
[16] C. Rasmussen,et al. Approximations for Binary Gaussian Process Classification , 2008 .
[17] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[18] Thorsten Joachims,et al. Cutting-plane training of structural SVMs , 2009, Machine Learning.
[19] Veselin Stoyanov,et al. Empirical Risk Minimization of Graphical Model Parameters Given Approximate Inference, Decoding, and Model Structure , 2011, AISTATS.
[20] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[21] Tony Jebara,et al. Multitask Sparsity via Maximum Entropy Discrimination , 2011, J. Mach. Learn. Res..