Asymptotic null controllability of bilinear systems
暂无分享,去创建一个
[1] Wolfgang Kliemann,et al. Controllability and stabilization of one-dimensional systems near bifurcation points , 1995 .
[2] R. Chabour,et al. Stabilization of nonlinear systems: A bilinear approach , 1993, Math. Control. Signals Syst..
[3] W. Kliemann,et al. Linear control semigroups acting on projective space , 1993 .
[4] Wolfgang Kliemann,et al. Minimal and Maximal Lyapunov Exponents of Bilinear Control Systems , 1993 .
[5] Wolfgang Kliemann,et al. Infinite time optimal control and periodicity , 1989 .
[6] D. Ruelle,et al. Ergodic theory of chaos and strange attractors , 1985 .
[7] J. Gauthier,et al. Controllability of right invariant systems on real simple Lie groups , 1984 .
[8] Wolfgang Kliemann,et al. The Morse spectrum of linear flows on vector bundles , 1996 .
[9] Wolfgang Kliemann,et al. The Lyapunov spectrum of families of time-varying matrices , 1996 .
[10] Jean-Paul Gauthier,et al. Controllability of right invariant systems on semi-simple Lie groups , 1995 .
[11] E. Joseph. Stability radii of two dimensional bilinear systems: Lyapunov exponent approach , 1993 .
[12] Eduardo D. Sontag,et al. FEEDBACK STABILIZATION OF NONLINEAR SYSTEMS , 1990 .
[13] A. Fuller,et al. Stability of Motion , 1976, IEEE Transactions on Systems, Man, and Cybernetics.
[14] V. I. Oseledec. A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .
[15] Morton Nadler,et al. The stability of motion , 1961 .
[16] S. Finch. Lyapunov Exponents , 2022 .