Asymptotic null controllability of bilinear systems

. The region of asymptotic null controllability of bilinear systems with control constraints is characterized using Lyapunov exponents. It is given by the cone over the region of attraction of the maximal control set in projective space containing zero in its spectral interval.

[1]  Wolfgang Kliemann,et al.  Controllability and stabilization of one-dimensional systems near bifurcation points , 1995 .

[2]  R. Chabour,et al.  Stabilization of nonlinear systems: A bilinear approach , 1993, Math. Control. Signals Syst..

[3]  W. Kliemann,et al.  Linear control semigroups acting on projective space , 1993 .

[4]  Wolfgang Kliemann,et al.  Minimal and Maximal Lyapunov Exponents of Bilinear Control Systems , 1993 .

[5]  Wolfgang Kliemann,et al.  Infinite time optimal control and periodicity , 1989 .

[6]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[7]  J. Gauthier,et al.  Controllability of right invariant systems on real simple Lie groups , 1984 .

[8]  Wolfgang Kliemann,et al.  The Morse spectrum of linear flows on vector bundles , 1996 .

[9]  Wolfgang Kliemann,et al.  The Lyapunov spectrum of families of time-varying matrices , 1996 .

[10]  Jean-Paul Gauthier,et al.  Controllability of right invariant systems on semi-simple Lie groups , 1995 .

[11]  E. Joseph Stability radii of two dimensional bilinear systems: Lyapunov exponent approach , 1993 .

[12]  Eduardo D. Sontag,et al.  FEEDBACK STABILIZATION OF NONLINEAR SYSTEMS , 1990 .

[13]  A. Fuller,et al.  Stability of Motion , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[14]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[15]  Morton Nadler,et al.  The stability of motion , 1961 .

[16]  S. Finch Lyapunov Exponents , 2022 .