Electrotonically Mediated Oscillatory Patterns in Neuronal Ensembles: An In Vitro Voltage-Dependent Dye-Imaging Study in the Inferior Olive

Spatiotemporal profiles of ensemble subthreshold neuronal oscillation were studied in brainstem slices using high-speed voltage-sensitive dye imaging. After local electrical stimuli, the overall voltage profile demonstrated coherent oscillatory waves that spread over the inferior olive (IO). These oscillations were also observed in concurrently obtained intracellular recordings from IO neurons. Over the first few seconds after the stimuli, the optically recorded oscillations clustered into coherent groups comprising hundreds of neurons. Statistical analysis of the spatial profiles of these clusters revealed size fluctuation around stable core regions that were surrounded by a rim the diameter of which varied in time during the oscillation period. The neuronal ensemble oscillations were calcium derived and had an average frequency range of 1–7 Hz. This rhythmic response demonstrated a different spatiotemporal distribution in the presence of picrotoxin, which induced the merging of neuronal clusters into larger areas of coherent activity. The possibility that such clustering is a consequence of intrinsic oscillations in ensembles of coupled neurons was tested using mathematical modeling.

[1]  A Grinvald,et al.  Improved fluorescent probes for the measurement of rapid changes in membrane potential. , 1982, Biophysical journal.

[2]  J. Szentágothai,et al.  Über den Ursprung der Kletterfasern des Kleinhirns , 1959, Zeitschrift für Anatomie und Entwicklungsgeschichte.

[3]  R. Llinás,et al.  Structural study of inferior olivary nucleus of the cat: morphological correlates of electrotonic coupling. , 1974, Journal of neurophysiology.

[4]  R. Llinás,et al.  Oscillatory properties of guinea‐pig inferior olivary neurones and their pharmacological modulation: an in vitro study. , 1986, The Journal of physiology.

[5]  J. Bower,et al.  Multiple Purkinje Cell Recording in Rodent Cerebellar Cortex , 1989, The European journal of neuroscience.

[6]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[7]  William Noble Grundy,et al.  Meta-MEME: motif-based hidden Markov models of protein families , 1997, Comput. Appl. Biosci..

[8]  Y Yarom,et al.  GABAergic modulation of olivary oscillations. , 2000, Progress in brain research.

[9]  John Best Magnetic resonance — the image! , 1988, The Medical journal of Australia.

[10]  C. Bell,et al.  Relations among climbing fiber responses of nearby Purkinje Cells. , 1972, Journal of neurophysiology.

[11]  I. Lampl,et al.  Subthreshold oscillations of the membrane potential: a functional synchronizing and timing device. , 1993, Journal of neurophysiology.

[12]  Rodolfo R. Llinás,et al.  A New Approach to the Analysis of Multidimensional Neuronal Activity: Markov Random Fields , 1997, Neural Networks.

[13]  R. Llinás,et al.  Electrotonic coupling between neurons in cat inferior olive. , 1974, Journal of neurophysiology.

[14]  J. Bloedel,et al.  Current concepts of climbing fiber function , 1998, The Anatomical record.

[15]  W. T. Thach,et al.  Nonclock behavior of inferior olive neurons: interspike interval of Purkinje cell complex spike discharge in the awake behaving monkey is random. , 1995, Journal of neurophysiology.

[16]  R. Llinás,et al.  Dynamic organization of motor control within the olivocerebellar system , 1995, Nature.

[17]  Jianhua Xuan,et al.  Magnetic resonance image analysis by information theoretic criteria and stochastic site models , 2001, IEEE Transactions on Information Technology in Biomedicine.

[18]  R Llinás,et al.  Some organizing principles for the control of movement based on olivocerebellar physiology. , 1997, Progress in brain research.

[19]  J. Voogd,et al.  Mesodiencephalic and cerebellar terminals terminate upon the same dendritic spines in the glomeruli of the cat and rat inferior olive: An ultrastructural study using a combination of [3H]-leucine and wheat germ agglutinin coupled horseradish peroxidase anterograde tracing , 1990, Neuroscience.

[20]  R. Llinás,et al.  The isochronic band hypothesis and climbing fibre regulation of motricity: an experimental study , 2001, The European journal of neuroscience.

[21]  Idan Segev,et al.  Low-amplitude oscillations in the inferior olive: a model based on electrical coupling of neurons with heterogeneous channel densities. , 1997, Journal of neurophysiology.

[22]  R. Llinás,et al.  The Functional Organization of the Olivo‐Cerebellar System as Examined by Multiple Purkinje Cell Recordings , 1989, The European journal of neuroscience.

[23]  Vladimir I. Nekorkin,et al.  Modeling inferior olive neuron dynamics , 2002, Neural Networks.

[24]  E. J. Lang,et al.  Organization of Olivocerebellar Activity in the Absence of Excitatory Glutamatergic Input , 2001, The Journal of Neuroscience.

[25]  A Grinvald,et al.  Ca2+- and K+-dependent communication between central nervous system myelinated axons and oligodendrocytes revealed by voltage-sensitive dyes. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[26]  A. Bleasel,et al.  Development and properties of spontaneous oscillations of the membrane potential in inferior olivary neurons in the rat. , 1992, Brain research. Developmental brain research.

[27]  A. Grinvald,et al.  Optical methods for monitoring neuron activity. , 1978, Annual review of neuroscience.

[28]  Anna Devor,et al.  To beat or not to beat: A decision taken at the network level , 2000, Journal of Physiology-Paris.

[29]  R. Llinás,et al.  Differential Roles of Apamin- and Charybdotoxin-Sensitive K+ Conductances in the Generation of Inferior Olive Rhythmicity In Vivo , 1997, The Journal of Neuroscience.

[30]  I. Lampl,et al.  Subthreshold oscillations and resonant behavior: two manifestations of the same mechanism , 1997, Neuroscience.

[31]  R. Llinás,et al.  Experimentally determined chaotic phase synchronization in a neuronal system. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[32]  R. Llinás,et al.  Patterns of Spontaneous Purkinje Cell Complex Spike Activity in the Awake Rat , 1999, The Journal of Neuroscience.

[33]  R. Llinás,et al.  GABAergic modulation of complex spike activity by the cerebellar nucleoolivary pathway in rat. , 1996, Journal of neurophysiology.

[34]  B M Salzberg,et al.  Optical recording of electrical activity from parallel fibres and other cell types in skate cerebellar slices in vitro. , 1987, The Journal of physiology.

[35]  J. Simpson,et al.  Microcircuitry and function of the inferior olive , 1998, Trends in Neurosciences.

[36]  R. Frostig,et al.  Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  H. W. Magoun,et al.  The functional significance of the inferior olive in the cat , 1945 .

[38]  Ron Kikinis,et al.  Markov random field segmentation of brain MR images , 1997, IEEE Transactions on Medical Imaging.

[39]  K. Doya,et al.  Electrophysiological properties of inferior olive neurons: A compartmental model. , 1999, Journal of neurophysiology.

[40]  C. Sotelo,et al.  Localization of glutamic‐acid‐decarboxylase‐immunoreactive axon terminals in the inferior olive of the rat, with special emphasis on anatomical relations between GABAergic synapses and dendrodendritic gap junctions , 1986, The Journal of comparative neurology.

[41]  V Makarenko Neural network with embedded oscillators. , 1994, The Biological bulletin.

[42]  R. Llinás,et al.  Serotonin Modulation of Inferior Olivary Oscillations and Synchronicity: A Multiple‐electrode Study in the Rat Cerebellum , 1995, The European journal of neuroscience.

[43]  J. Voogd,et al.  Cerebellar Influence on Olivary Excitability in the Cat , 1995, The European journal of neuroscience.

[44]  D. McCormick,et al.  Synchronized oscillations in the inferior olive are controlled by the hyperpolarization-activated cation current I(h). , 1997, Journal of neurophysiology.

[45]  T. Ebner,et al.  Role of climbing fibers in determining the spatial patterns of activation in the cerebellar cortex to peripheral stimulation: an optical imaging study , 2000, Neuroscience.

[46]  J. F. Soechting,et al.  Changes in a motor pattern following cerebellar and olivary lesions in the squirrel monkey , 1976, Brain Research.

[47]  R. Llinás,et al.  Morphological Correlates of Bilateral Synchrony in the Rat Cerebellar Cortex , 1996, The Journal of Neuroscience.

[48]  J. Eccles,et al.  The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum , 1966, The Journal of physiology.

[49]  R Llinás,et al.  Bilaterally synchronous complex spike Purkinje cell activity in the mammalian cerebellum , 2001, The European journal of neuroscience.

[50]  D. Armstrong,et al.  A quantitative study of the purkinje cells in the cerebellum of the albino rat , 1970, The Journal of comparative neurology.

[51]  H. Ross,et al.  Participation of the principal olivary nucleus in neocerebellar motor control , 2004, Experimental Brain Research.

[52]  Enrico Mugnaini,et al.  Comparative study of glutamate decarboxylase immunoreactive boutons in the mammalian inferior olive , 1989, The Journal of comparative neurology.

[53]  R. Llinás,et al.  Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. , 1981, The Journal of physiology.

[54]  G. Aghajanian,et al.  Intracellular studies in the facial nucleus illustrating a simple new method for obtaining viable motoneurons in adult rat brain slices , 1989, Synapse.

[55]  R. Llinás,et al.  Inferior olive: its role in motor learing , 1975, Science.

[56]  G. Martin,et al.  The direct spinal area of the inferior olivary nucleus: An electron microscopic study , 2004, Experimental Brain Research.

[57]  R. Llinás,et al.  Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage‐dependent ionic conductances. , 1981, The Journal of physiology.

[58]  Robert E. Foster,et al.  Oscillatory behavior in inferior olive neurons: Mechanism, modulation, cell aggregates , 1986, Brain Research Bulletin.

[59]  J. O'leary,et al.  Neurological deficit in cats with lesions of the olivocebellar system. , 1971, Archives of neurology.

[60]  A. J. Bower,et al.  Changes in the numbers of neurons and astrocytes during the postnatal development of the rat inferior olive , 1999, The Journal of comparative neurology.

[61]  R. Llinás,et al.  Electrophysiology of guinea‐pig cerebellar nuclear cells in the in vitro brain stem‐cerebellar preparation. , 1988, The Journal of physiology.