Marangoni convection of power law fluids driven by power-law temperature gradient

Abstract This paper presents a research for Marangoni convection driven by a power-law temperature gradient. It is assumed that the surface tension is quadratic functions of the temperature and the effects of power law viscosity on temperature field into account by assuming that the temperature field is similar to the velocity field. The Navier–Stokes equations and the heat equation with modified Fourier's law heat conduction (Zheng's Model) for power law fluid media are reduced to two nonlinear ordinary differential equations and the solutions are presented numerically. The effects of the Power-law Number and the Marangoni Number on the interfacial velocity and the interfacial temperature gradient are presented in tabular form and the effects of various parameters on the velocity and temperature fields are analyzed and discussed in detail.

[1]  S. Slavtchev,et al.  Thermocapillary flow in a liquid layer at minimum in surface tension , 1998 .

[2]  R. Narayanan,et al.  A tutorial on the Rayleigh-Marangoni-Benard problem with multiple layers and side wall effects. , 1999, Chaos.

[3]  F. Heslot,et al.  Fingering instability of thin spreading films driven by temperature gradients , 1990, Nature.

[4]  Chien-Hsin Chen Heat transfer in a power-law fluid film over a unsteady stretching sheet , 2003 .

[5]  Xinxin Zhang,et al.  Analytical solution for Marangoni convection over a liquid-vapor surface due to an imposed temperature gradient , 2008, Math. Comput. Model..

[6]  Alois Würger,et al.  Thermophoresis in colloidal suspensions driven by Marangoni forces. , 2007, Physical review letters.

[7]  Charles R Doering,et al.  Bounds on heat transport in Bénard-Marangoni convection. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  L. Tuckerman,et al.  Marangoni convection in binary mixtures with Soret effect , 1998, Journal of Fluid Mechanics.

[9]  I. Pop,et al.  Boundary layer flow at a three-dimensional stagnation point in power-law non-Newtonian fluids , 1993 .

[10]  Counting statistics and decoherence in coupled quantum dots , 2005, cond-mat/0507403.

[11]  J. Pearson,et al.  On convection cells induced by surface tension , 1958, Journal of Fluid Mechanics.

[12]  Ali J. Chamkha,et al.  Exact analytical results for the thermosolutal MHD Marangoni boundary layers , 2008 .

[14]  E. Campbell,et al.  Marangoni effect in SiO2 during field-directed chemical vapor deposition growth of carbon nanotubes , 2006 .

[15]  I. Pop,et al.  Convective wall plume in power-law fluid: Second-order correction for the adiabatic wall , 1992 .

[16]  Ali J. Chamkha,et al.  Exact analytical solutions for thermosolutal Marangoni convection in the presence of heat and mass generation or consumption , 2007 .

[17]  Rohana Abdul Hamid,et al.  RADIATION EFFECTS ON MARANGONI CONVECTION OVER A FLAT SURFACE WITH SUCTION AND INJECTION , 2011 .

[18]  T. Bergman Numerical simulation of double‐diffusive Marangoni convection , 1986 .

[19]  Chu,et al.  Korteweg-de Vries soliton excitation in Bénard-Marangoni convection. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[20]  S. Kalliadasis,et al.  Dynamics of a falling film with solutal Marangoni effect. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  R. Folk,et al.  Poisson‐Voronoi核形成と成長変形における分域構造の時間発展:一次元と三次元の結果 , 2008 .

[22]  Chien-Hsin Chen,et al.  Marangoni effects on forced convection of power-law liquids in a thin film over a stretching surface , 2007 .

[23]  Ali J. Chamkha,et al.  Similarity solutions for MHD thermosolutal Marangoni convection over a flat surface in the presence of heat generation or absorption effects , 2005 .

[24]  Otaqsara S. M. Taheri ZnOのCoドーピング,キャッピングエージェントおよび光学構造研究の効果: Co2+ナノ微粒子 , 2011 .

[25]  Daniel Loss,et al.  Direct measurement of the spin-orbit interaction in a two-electron InAs nanowire quantum dot. , 2007, Physical review letters.

[26]  R. Savino,et al.  Transient Marangoni convection in hanging evaporating drops , 2004 .

[27]  D. Christopher,et al.  Similarity simulation for Marangoni convection around a vapor bubble during nucleation and growth , 2001 .

[28]  A. De Wit,et al.  Steady Marangoni flow traveling with chemical fronts. , 2006, The Journal of chemical physics.

[29]  K. Arafune,et al.  Thermal and solutal Marangoni convection in In–Ga–Sb system , 1999 .

[30]  C. Durniak,et al.  Soliton interaction in a complex plasma. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Heat Transfer for Power Law Non-Newtonian Fluids , 2006 .

[32]  L. Bécu,et al.  Evidence for three-dimensional unstable flows in shear-banding wormlike micelles. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  L. Scriven,et al.  The Marangoni Effects , 1960, Nature.

[34]  I. Pop,et al.  Mixed Convection to Power-Law Type Non-Newtonian Fluids from a Vertical Wall , 1991 .

[35]  Liancun Zheng,et al.  Fully Developed Convective Heat Transfer of Power Law Fluids in a Circular Tube , 2008 .

[36]  Liancun Zheng,et al.  Heat transfer in pseudo-plastic non-Newtonian fluids with variable thermal conductivity , 2011 .

[37]  A. Nepomnyashchy,et al.  Instabilities and ordered patterns in nonisothermal ultrathin bilayer fluid films. , 2009, Physical review letters.

[38]  A. Thess,et al.  Turbulent Bénard-Marangoni Convection: Results of Two-Dimensional Simulations , 1998 .

[39]  A. Fernández-Nieves,et al.  Structure formation from mesoscopic soft particles. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Mehmet Cem Ece,et al.  Similarity solutions for free convection to power-law fluids from a heated vertical plate , 2002, Appl. Math. Lett..

[41]  J. K. Platten,et al.  Marangoni convection of non‐Newtonian power law fluids in a shallow rectangular cavity , 2000 .