Convergent evolution of a vertebrate-like methylome in a marine sponge

[1]  Robert J. Schmitz,et al.  Diversity of cytosine methylation across the fungal tree of life , 2019, Nature Ecology & Evolution.

[2]  Robert J. Schmitz,et al.  Dnmt1 is essential for egg production and embryo viability in the large milkweed bug, Oncopeltus fasciatus , 2019, Epigenetics & Chromatin.

[3]  Piotr J. Balwierz,et al.  Amphioxus functional genomics and the origins of vertebrate gene regulation , 2018, Nature.

[4]  S. Heath,et al.  Transcription Factors Drive Tet2-Mediated Enhancer Demethylation to Reprogram Cell Fate. , 2018, Cell stem cell.

[5]  F. Lyko,et al.  Dnmt1 has an essential function despite the absence of CpG DNA methylation in the red flour beetle Tribolium castaneum , 2018, Scientific Reports.

[6]  I. Amit,et al.  Early metazoan cell type diversity and the evolution of multicellular gene regulation , 2018, Nature Ecology & Evolution.

[7]  Jia Gu,et al.  fastp: an ultra-fast all-in-one FASTQ preprocessor , 2018, bioRxiv.

[8]  Philipp H. Schiffer,et al.  Evolutionary analysis indicates that DNA alkylation damage is a byproduct of cytosine DNA methyltransferase activity , 2018, Nature Genetics.

[9]  F. Lyko The DNA methyltransferase family: a versatile toolkit for epigenetic regulation , 2017, Nature Reviews Genetics.

[10]  P. Williams,et al.  Ctenophore relationships and their placement as the sister group to all other animals , 2017, Nature Ecology & Evolution.

[11]  R. O’Malley,et al.  Mapping genome-wide transcription-factor binding sites using DAP-seq , 2017, Nature Protocols.

[12]  Yi Zhang,et al.  TET-mediated active DNA demethylation: mechanism, function and beyond , 2017, Nature Reviews Genetics.

[13]  D. Schübeler,et al.  Impact of cytosine methylation on DNA binding specificities of human transcription factors , 2017, Science.

[14]  Selene L. Fernandez-Valverde,et al.  Landscape of histone modifications in a sponge reveals the origin of animal cis-regulatory complexity , 2017, eLife.

[15]  D. Richter,et al.  A Large and Consistent Phylogenomic Dataset Supports Sponges as the Sister Group to All Other Animals , 2017, Current Biology.

[16]  H. Blum,et al.  The genome of the contractile demosponge Tethya wilhelma and the evolution of metazoan neural signalling pathways , 2017, bioRxiv.

[17]  Robert J. Schmitz,et al.  Evolution of DNA Methylation across Insects , 2016, Molecular biology and evolution.

[18]  Robert J. Schmitz,et al.  Widespread natural variation of DNA methylation within angiosperms , 2016, Genome Biology.

[19]  J. Tena,et al.  The Dynamic Regulatory Genome of Capsaspora and the Origin of Animal Multicellularity , 2016, Cell.

[20]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[21]  Robert J. Schmitz,et al.  On the origin and evolutionary consequences of gene body DNA methylation , 2016, Proceedings of the National Academy of Sciences.

[22]  Selene L. Fernandez-Valverde,et al.  Bilaterian-like promoters in the highly compact Amphimedon queenslandica genome , 2016, Scientific Reports.

[23]  Matthew D. Schultz,et al.  Active DNA demethylation at enhancers during the vertebrate phylotypic period , 2016, Nature Genetics.

[24]  B. Gaut,et al.  Evolutionary patterns of genic DNA methylation vary across land plants , 2016, Nature Plants.

[25]  Fei Wang,et al.  Transcriptome-wide distribution and function of RNA hydroxymethylcytosine , 2016, Science.

[26]  Anaïs F. Bardet,et al.  Competition between DNA methylation and transcription factors determines binding of NRF1 , 2015, Nature.

[27]  S. V. van Heeringen,et al.  Embryonic transcription is controlled by maternally defined chromatin state , 2015, Nature Communications.

[28]  X. Gu,et al.  Genome-wide and single-base resolution DNA methylomes of the Sea Lamprey (Petromyzon marinus) Reveal Gradual Transition of the Genomic Methylation Pattern in Early Vertebrates , 2015, bioRxiv.

[29]  Zhaohui S. Qin,et al.  Detection of differentially methylated regions from whole-genome bisulfite sequencing data without replicates , 2015, Nucleic acids research.

[30]  Selene L. Fernandez-Valverde,et al.  Deep developmental transcriptome sequencing uncovers numerous new genes and enhances gene annotation in the sponge Amphimedon queenslandica , 2015, BMC Genomics.

[31]  S. Leys,et al.  The hidden biology of sponges and ctenophores. , 2015, Trends in ecology & evolution.

[32]  Lukas Burger,et al.  Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation , 2015, Nature.

[33]  T. Bestor,et al.  FBXL10 protects Polycomb-bound genes from hypermethylation , 2015, Nature Genetics.

[34]  Gail H Deutsch,et al.  In vitro generation of human pluripotent stem cell derived lung organoids , 2015, eLife.

[35]  Jussi Taipale,et al.  Conservation of transcription factor binding specificities across 600 million years of bilateria evolution , 2015, eLife.

[36]  D. Schübeler Function and information content of DNA methylation , 2015, Nature.

[37]  H. Ellegren,et al.  Evolutionary Consequences of DNA Methylation on the GC Content in Vertebrate Genomes , 2015, G3: Genes, Genomes, Genetics.

[38]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[39]  X. Fang,et al.  Genome-wide and single-base resolution DNA methylomes of the Pacific oyster Crassostrea gigas provide insight into the evolution of invertebrate CpG methylation , 2014, BMC Genomics.

[40]  D. Ferrier,et al.  Calcisponges have a ParaHox gene and dynamic expression of dispersed NK homeobox genes , 2014, Nature.

[41]  Arnaud R Krebs,et al.  High-throughput engineering of a mammalian genome reveals building principles of methylation states at CG rich regions , 2014, eLife.

[42]  Maja Adamska,et al.  Developmental gene expression provides clues to relationships between sponge and eumetazoan body plans , 2014, Nature Communications.

[43]  Fidel Ramírez,et al.  deepTools: a flexible platform for exploring deep-sequencing data , 2014, Nucleic Acids Res..

[44]  André F. Rendeiro,et al.  Evolutionary conservation of the eumetazoan gene regulatory landscape , 2014, Genome research.

[45]  Nicholas H. Putnam,et al.  The Genome of the Ctenophore Mnemiopsis leidyi and Its Implications for Cell Type Evolution , 2013, Science.

[46]  Michael Q. Zhang,et al.  BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data , 2013, BMC Genomics.

[47]  Andrew G. Clark,et al.  Function and Evolution of DNA Methylation in Nasonia vitripennis , 2013, PLoS genetics.

[48]  Michael B. Stadler,et al.  Identification of active regulatory regions from DNA methylation data , 2013, Nucleic acids research.

[49]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[50]  Peter F. Stadler,et al.  The correlation of genome size and DNA methylation rate in metazoans , 2013, Theory in Biosciences.

[51]  Bing Ren,et al.  Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine , 2012, Nature Protocols.

[52]  Qiang Wang,et al.  The oyster genome reveals stress adaptation and complexity of shell formation , 2012, Nature.

[53]  S. V. van Heeringen,et al.  Dynamics of enhancer chromatin signatures mark the transition from pluripotency to cell specification during embryogenesis , 2012, Genome research.

[54]  Yong Zhang,et al.  Identifying ChIP-seq enrichment using MACS , 2012, Nature Protocols.

[55]  Peter A. Jones Functions of DNA methylation: islands, start sites, gene bodies and beyond , 2012, Nature Reviews Genetics.

[56]  Vijay K. Tiwari,et al.  DNA-binding factors shape the mouse methylome at distal regulatory regions , 2011, Nature.

[57]  Sean R. Eddy,et al.  Accelerated Profile HMM Searches , 2011, PLoS Comput. Biol..

[58]  Amos Tanay,et al.  Primate CpG Islands Are Maintained by Heterogeneous Evolutionary Regimes Involving Minimal Selection , 2011, Cell.

[59]  Felix Krueger,et al.  Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications , 2011, Bioinform..

[60]  L. Aravind,et al.  Natural history of eukaryotic DNA methylation systems. , 2011, Progress in molecular biology and translational science.

[61]  Todd H. Oakley,et al.  The Amphimedon queenslandica genome and the evolution of animal complexity , 2010, Nature.

[62]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[63]  D. Zilberman,et al.  Genome-Wide Evolutionary Analysis of Eukaryotic DNA Methylation , 2010, Science.

[64]  M. Pellegrini,et al.  Conservation and divergence of methylation patterning in plants and animals , 2010, Proceedings of the National Academy of Sciences.

[65]  Julie A. Law,et al.  Establishing, maintaining and modifying DNA methylation patterns in plants and animals , 2010, Nature Reviews Genetics.

[66]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[67]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[68]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[69]  G. Richards,et al.  Isolation of amphimedon developmental material. , 2008, CSH protocols.

[70]  M. Martindale,et al.  Comb jellies (ctenophora): a model for Basal metazoan evolution and development. , 2008, CSH protocols.

[71]  A. Bird,et al.  DNA methylation landscapes: provocative insights from epigenomics , 2008, Nature Reviews Genetics.

[72]  David Haussler,et al.  Using native and syntenically mapped cDNA alignments to improve de novo gene finding , 2008, Bioinform..

[73]  Nicholas H. Putnam,et al.  Sea Anemone Genome Reveals Ancestral Eumetazoan Gene Repertoire and Genomic Organization , 2007, Science.

[74]  Adrian Bird,et al.  CpG methylation is targeted to transcription units in an invertebrate genome. , 2007, Genome research.

[75]  B. Degnan,et al.  Embryogenesis and metamorphosis in a haplosclerid demosponge: gastrulation and transdifferentiation of larval ciliated cells to choanocytes , 2005 .

[76]  Eva Jablonka,et al.  The Role of DNA Methylation in Invertebrates: Developmental Regulation or Genome Defense? , 1998 .

[77]  A. Bird,et al.  Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. , 1994, Genes & development.

[78]  Z. Siegfried,et al.  Spl elements protect a CpG island from de novo methylation , 1994, Nature.