Magnetic properties of electron-doped La0.23Ca0.77MnO3 nanoparticles

Magnetic properties of electron-doped La0.23Ca0.77MnO3 manganite nanoparticles, with average size of 12 and 60 nm, prepared by the glycine–nitrate method, have been investigated in the temperature range 5–300 K and magnetic fields up to 90 kOe. It is suggested that weak ferromagnetic moment results from ferromagnetic shells of the basically antiferromagnetic nanoparticles and from domains of frustrated disordered phase in the core. Assumption of two distinct sources of ferromagnetism is supported by the appearance of two independent ferromagnetic contributions in the fit of the T3/2 Bloch law to spontaneous magnetization. The ferromagnetic components, which are more pronounced in smaller particles, occupy only a small fraction of the nanoparticle volume and the antiferromagnetic ground state remains stable. It is found that the magnetic hysteresis loops following field cooled processes, display size-dependent horizontal and vertical shifts, namely, exhibiting exchange bias effect. Time-dependent magnetization dynamics demonstrating two relaxation rates were observed at constant magnetic fields upon cooling to T < 100 K.

[1]  W. Meiklejohn,et al.  New Magnetic Anisotropy , 1956 .

[2]  F. Brailsford,et al.  Physical principles of magnetism , 1966 .

[3]  J. Gittleman,et al.  Superparamagnetism and relaxation effects in granular Ni-Si O 2 and Ni- Al 2 O 3 films , 1974 .

[4]  White,et al.  Model system for slow dynamics. , 1991, Physical review letters.

[5]  J. Mydosh Spin glasses : an experimental introduction , 1993 .

[6]  P. Hendriksen,et al.  Finite-size modifications of the magnetic properties of clusters. , 1993, Physical review. B, Condensed matter.

[7]  Chen,et al.  Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation. , 1996, Physical review. B, Condensed matter.

[8]  Correlation between peak and median blocking temperatures by magnetization measurement on isolated ferromagnetic and antiferromagnetic particle systems , 1997 .

[9]  M. F. Hansen,et al.  Estimation of blocking temperatures from ZFC/FC curves , 1999 .

[10]  Magnetic relaxation phenomena and cluster glass properties of La 0.7 − x Y x Ca 0.3 MnO 3 manganites , 2000, cond-mat/0010110.

[11]  Novel dynamical effects and persistent memory in phase separated manganites. , 2002, Physical review letters.

[12]  Crystal and magnetic structure of the La 1 − x Ca x MnO 3 compound ( x = 0.8 , 0.85 ) , 2001, cond-mat/0111352.

[13]  Gonzalo Alvarez,et al.  Nanoscale phase separation and colossal magnetoresistance : the physics of manganites and related compounds , 2003 .

[14]  J. Goodenough Rare earth – manganese perovskites , 2003 .

[15]  R. Zheng,et al.  Transport, magnetic, specific heat, internal friction, and shear modulus in the charge ordered La0.25Ca0.75MnO3 manganite , 2003 .

[16]  Phase diagram of theLa1−xCaxMnO3compound(0.5<~x<~0.9) , 2002, cond-mat/0205410.

[17]  T. Lookman,et al.  Strain-induced metal–insulator phase coexistence in perovskite manganites , 2004, Nature.

[18]  I. Dubenko,et al.  Size Induced Variations in Structural and Magnetic Properties of Double Exchange La0.8Sr0.2MnO3−δ Nano-Ferromagnet , 2004 .

[19]  R. Pielaszek method for determination of the grain size distribution from powder diffraction line profile , 2004 .

[20]  J. Rivas,et al.  Origin of the glassy magnetic behavior of the phase segregated state of the perovskites. , 2004, Physical review letters.

[21]  D. Fiorani Surface Effects in Magnetic Nanoparticles , 2005 .

[22]  D. Fiorani,et al.  Surface and Interparticle Effects in Amorphous Magnetic Nanoparticles , 2005 .

[23]  Jordi Sort,et al.  Exchange bias in nanostructures , 2005 .

[24]  Intrinsic interface exchange coupling of ferromagnetic nanodomains in a charge ordered manganite , 2005, cond-mat/0507307.

[25]  Lamellar phase separation and dynamic competition in La0.23Ca0.77MnO3. , 2004, Physical review letters.

[26]  Phase Diagram , 2006 .

[27]  Thermodynamic modeling of phase separation in manganites , 2005, cond-mat/0511523.

[28]  J. Liu,et al.  Surface phase separation in nanosized charge-ordered manganites , 2006, cond-mat/0612391.

[29]  P. A. Kumar,et al.  Deviation from Bloch T3/2 law in ferrite nanoparticles , 2006 .

[30]  Phase diagram of EuxSr1-xS , 2007 .

[31]  S. Dong,et al.  Charge-order breaking and ferromagnetism in La 0.4 Ca 0.6 MnO 3 nanoparticles , 2007 .

[32]  Experimental and theoretical studies of nanoparticles of antiferromagnetic materials , 2007 .

[33]  T. Qian,et al.  Particle size effects on interplay between charge ordering and magnetic properties in nanosized La(0.25)Ca(0.75)MnO(3) , 2007 .

[34]  G. Jung,et al.  Disorder-induced phase coexistence in bulk doped manganites and its suppression in nanometer-sized crystals: The case ofLa0.9Ca0.1MnO3 , 2007 .

[35]  Enhanced grain surface effect on magnetic properties of La0.5Gd0.2Sr0.3MnO3 nanoparticles: A comparison with bulk counterpart , 2007 .

[36]  H. Pastoriza,et al.  Magnetism of manganite nanotubes constituted by assembled nanoparticles , 2007 .

[37]  V. Markovich,et al.  Surface and exchange-bias effects in compacted CaMnO 3 − δ nanoparticles , 2008 .

[38]  E. Dagotto,et al.  Ferromagnetic tendency at the surface of CE-type charge-ordered manganites , 2008, 0805.2702.

[39]  C. Carbonera,et al.  Size-dependent magnetic properties of magnetoferritin , 2008 .

[40]  D. Mogilyansky,et al.  Nanometer size effect on magnetic order inLa0.4Ca0.6MnO3: Predominant influence of doped electron localization , 2008 .

[41]  S. Bhat,et al.  Magnetic, electron magnetic resonance and optical studies of Pr0.7Pb0.3MnO3 nanoparticles , 2008 .

[42]  J. Ding,et al.  Size-dependent exchange bias inLa0.25Ca0.75MnO3nanoparticles , 2008 .

[43]  M. Salamon,et al.  Time-dependent phenomena in phase-separated electron-doped manganites , 2008 .

[44]  M. Tadic,et al.  Magnetic properties of nanoparticle La0.7Ca0.3MnO3 prepared by glycine–nitrate method without additional heat treatment , 2008 .

[45]  C. Rao,et al.  Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides , 2006, 0707.3183.

[46]  L. Ghivelder,et al.  Equilibrium tuned by a magnetic field in phase separated manganite , 2008, 0807.2631.

[47]  W. Kleemann,et al.  TOPICAL REVIEW: Supermagnetism , 2009 .

[48]  Synthesis and Exchange Bias in γ-Fe2O3/CoO and Reverse CoO/γ-Fe2O3 Binary Nanoparticles , 2009 .

[49]  Shiming Zhou,et al.  Facile synthesis of Ca-doped manganite nanoparticles by a nonaqueous sol–gel method and their magnetic properties , 2010 .

[50]  V. Markovich,et al.  Size effect on the magnetic properties of antiferromagnetic La0.2Ca0.8MnO3 nanoparticles , 2010 .

[51]  V. Markovich,et al.  Size-driven magnetic transitions in La1/3Ca2/3MnO3 nanoparticles , 2010 .

[52]  V. Dyakonov,et al.  Magnetic, resonance and transport properties of nanopowder of La0.7Sr0.3MnO3 manganites , 2010 .

[53]  Shiming Zhou,et al.  Griffiths phase and exchange bias in La1−xCaxMnO3 (x=0.50, 0.67, and 0.75) nanoparticles , 2010 .

[54]  S. Giri,et al.  Exchange bias effect in alloys and compounds , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[55]  J. Rivas,et al.  Finite size and surface effects on the magnetic properties of cobalt ferrite nanoparticles , 2011 .

[56]  C. Wang,et al.  The magnetic properties of nanosized La1−xCaxMnO3 (0.5 ≤ x ≤ 0.8) , 2011 .

[57]  E. Rozenberg Comment on “The magnetic properties of nanosized La1 − xCaxMnO3 (0.5 ≤ x ≤ 0.8)” , 2011 .

[58]  Yong Hu,et al.  Surface-anisotropy and training effects of exchange bias in nanoparticles with inverted ferromagnetic-antiferromagnetic core-shell morphology , 2011 .

[59]  Nanometer Sized Effects on Magnetic Ordering in La–Ca Manganites, Probed by Magnetic Resonance , 2011 .

[60]  Exchange Bias Effect in Alloys and Compounds , 2011 .

[61]  Exchange Bias Effect in La0.2Ca0.8MnO3 Antiferromagnetic Nanoparticles with Two Ferromagnetic-Lik , 2011 .

[62]  D. H. Manh,et al.  Size effects and interactions in La0.7Ca0.3MnO3 nanoparticles , 2011 .

[63]  S. Cojocaru,et al.  Magnon gas and deviation from the Bloch law in a nanoscale Heisenberg ferromagnet , 2011 .

[64]  S. Majetich,et al.  Magnetic nanoparticles , 2013, Handbook of Magnetism and Magnetic Materials.