A new interpretation of flower guide colouration: Absorption of ultraviolet light enhances colour saturation

In melittophilous plants the colour pattern of the flowers, as perceived by bumblebees, is a gradient of centripetally increasing spectral purity. This pattern serves as a signal for innate flower recognition in naive bumblebees permitting orientation to flowers and landing on flowers. Structures which make up the total signal pattern can include the background (e.g., green leaves), corollas, and stamens or floral guides. How various colour parameters, such as dominant wavelength, intensity, and spectral purity influence the colour signal pattern of flowers is analyzed. The process of strong absorption of ultraviolet light is shown to be a mechanism for the enhancement of spectral purity in flower guides. The importance of other mechanisms is also demonstrated. The presence of a gradient of centripetally increasing spectral purity in floral colour patterns as perceived by a bumblebee's eyes is demonstrated by a comparison of the spectral reflectance in different parts of the flower and a representation of colour loci in the colour triangle.

[1]  Yoel Cohen,et al.  ULTRAVIOLET REFLECTANCE CHARACTERISTICS IN FLOWERS OF CRUCIFERS , 1972 .

[2]  R. Menzel Untersuchungen zum Erlernen von Spektralfarben durch die Honigbiene (Apis mellifica) , 1967, Zeitschrift für vergleichende Physiologie.

[3]  K. Lunau Angeborenes und erlerntes Verhalten beim Blütenbesuch von Schwebfliegen-Attrappenversuche mit Eristalis pertinax (SCOPOLI) (Diptera, Syrphidae) , 1988 .

[4]  H. Kugler UV-Musterungen auf Blüten und ihr Zustandekommen , 1962, Planta.

[5]  S. Kawano,et al.  Spectral polymorphisms in angiosperm flowers determined by differential ultraviolet reflectance , 1975, The botanical magazine = Shokubutsu-gaku-zasshi.

[6]  G. Osche Optische Signale in der Coevolution von Pflanze und Tier , 1983, Berichte der Deutschen Botanischen Gesellschaft.

[7]  P. Kevan VEGETATION AND FLORAL COLORS REVEALED BY ULTRAVIOLET LIGHT: INTERPRETATIONAL DIFFICULTIES FOR FUNCTIONAL SIGNIFICANCE , 1979 .

[8]  P. R. Atsatt,et al.  Frequency of Reflection and Absorption of Ultraviolet Light in Flowering Plants , 1975 .

[9]  Christa Neumeyer,et al.  Simultaneous color contrast in the honeybee , 1980, Journal of comparative physiology.

[10]  T. Eisner,et al.  Flavonols: Pigments Responsible for Ultraviolet Absorption in Nectar Guide of Flower , 1972, Science.

[11]  R. Ornduff,et al.  Variation in the spectral qualities of flowers in the Nymphoides indica complex (Menyanthaceae) and its possible adaptive significance , 1970 .

[12]  R. Menzel,et al.  Color distance derived from a receptor model of color vision in the honeybee , 1987, Biological Cybernetics.

[13]  Perception of Colour , 1882, Nature.

[14]  S. T. Henderson Daylight and Its Spectrum , 1977 .

[15]  Color distance derived from a receptor model of color vision in the honeybee , 1987 .

[16]  Karl Daumer,et al.  Blumenfarben, wie sie die Bienen sehen , 1958, Zeitschrift für vergleichende Physiologie.

[17]  Mazokhin-Porshniakov Ga Colorimetric demonstration of color vision trichromatism in bees (use of the bumblebee as an example) , 1962 .

[18]  G. Osche Zur Evolution optischer Signale bei Blütenpflanzen , 1979 .

[19]  C. Neumeyer Wavelength discrimination in the goldfish , 1986, Journal of Comparative Physiology A.

[20]  R. Silberglied Communication in the Ultraviolet , 1979 .

[21]  D. Ilse Colour Discrimination in the Dronefly, Eristalis tenax , 1949, Nature.

[22]  Karl Daumer,et al.  Reizmetrische Untersuchung des Farbensehens der Bienen , 1956, Zeitschrift für vergleichende Physiologie.

[23]  K. Lunau Colour saturation triggers innate reactions to flower signals: Flower dummy experiments with bumblebees , 1990, Journal of Comparative Physiology A.

[24]  F. Knoll Blütenökologie und Sinnesphysiologie der Insekten , 1924, Naturwissenschaften.