An Operator-integration-factor splitting method for time-dependent problems: Application to incompressible fluid flow

In this paper we present a simple, general methodology for the generation of high-order operator decomposition (“splitting”) techniques for the solution of time-dependent problems arising in ordinary and partial differential equations. The new approach exploits operator integration factors to reduce multiple-operator equations to an associated series of single-operator initial-value subproblems. Two illustrations of the procedure are presented: the first, a second-order method in time applied to velocity-pressure decoupling in the incompressible Stokes problem; the second, a third-order method in time applied to convection-Stokes decoupling in the incompressible Navier-Stokes equations. Critical open questions are briefly described.

[1]  L. Kovasznay Laminar flow behind a two-dimensional grid , 1948 .

[2]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[3]  C. W. Gear,et al.  Numerical initial value problem~ in ordinary differential eqttations , 1971 .

[4]  N. N. Yanenko,et al.  The Method of Fractional Steps , 1971 .

[5]  G. I. Marchuk,et al.  ON THE THEORY OF THE SPLITTING-UP METHOD , 1971 .

[6]  E. Hofer,et al.  A Partially Implicit Method for Large Stiff Systems of ODEs with Only Few Equations Introducing Small Time-Constants , 1976 .

[7]  R. S. Rogallo,et al.  An ILLIAC program for the numerical simulation of homogeneous incompressible turbulence , 1977 .

[8]  John V. Wait,et al.  Simulation methods for combined linear and nonlinear systems , 1978 .

[9]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[10]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[11]  C. W. Gear,et al.  Automatic Multirate Methods for Ordinary Differential Equation , 1980, IFIP Congress.

[12]  J. P. Benque,et al.  A new finite element method for Navier-Stokes equations coupled with a temperature equation , 1982 .

[13]  O. Pironneau On the transport-diffusion algorithm and its applications to the Navier-Stokes equations , 1982 .

[14]  Gene H. Golub,et al.  Matrix computations , 1983 .

[15]  P. Moin,et al.  Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations , 1984 .

[16]  Robert L. Lee,et al.  A MODIFIED FINITE ELEMENT METHOD FOR SOLVING THE TIME-DEPENDENT, INCOMPRESSIBLE NAVIER-STOKES EQUATIONS. PART 1: THEORY* , 1984 .

[17]  M. Deville,et al.  Pressure and time treatment for Chebyshev spectral solution of a Stokes problem , 1984 .

[18]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[19]  Earll M. Murman,et al.  Finite volume method for the calculation of compressible chemically reacting flows , 1985 .

[20]  Y. Chao,et al.  A Resolution of the Stiffness Problem of Reactor Kinetics , 1985 .

[21]  Thomas A. Zang,et al.  On spectral multigrid methods for the time-dependent Navier-Stokes equations , 1986 .

[22]  P. Spalart Numerical simulation of boundary layers. Part 1: Weak formulation and numerical method , 1986 .

[23]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[24]  S. Orszag,et al.  Boundary conditions for incompressible flows , 1986 .

[25]  Jacob K. White,et al.  Relaxation Techniques for the Simulation of VLSI Circuits , 1986 .

[26]  R. Glowinski,et al.  Numerical methods for the navier-stokes equations. Applications to the simulation of compressible and incompressible viscous flows , 1987 .

[27]  Anthony T. Patera,et al.  A well-posed optimal spectral element approximation for the Stokes problem , 1987 .

[28]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[29]  L. Trefethen,et al.  THE EIGENVALUES OF SECOND-ORDER SPECTRAL DIFFERENTIATION MATRICES* , 1988 .

[30]  J. Cahouet,et al.  Some fast 3D finite element solvers for the generalized Stokes problem , 1988 .

[31]  Einar M. Rønquist,et al.  Optimal spectral element methods for the unsteady three-dimensional incompressible Navier-Stokes equations , 1988 .

[32]  B. Mikic,et al.  Minimum-dissipation transport enhancement by flow destabilization: Reynolds’ analogy revisited , 1988, Journal of Fluid Mechanics.

[33]  George Em Karniadakis,et al.  Spectral element simulations of laminar and turbulent flows in complex geometries , 1989 .

[34]  A. Richard Newton,et al.  The exploitation of latency and multirate behavior using nonlinear relaxation for circuit simulation , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[35]  L. Tuckerman,et al.  A method for exponential propagation of large systems of stiff nonlinear differential equations , 1989 .

[36]  A. Patera,et al.  Spectral element methods for the incompressible Navier-Stokes equations , 1989 .

[37]  Anthony T. Patera,et al.  A Legendre spectral element method for simulation of unsteady incompressible viscous free-surface flows , 1990 .

[38]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[39]  Anthony T. Patera,et al.  A high-order Lagrangian-decoupling method for the incompressible Navier-Stokes equations , 1990 .

[40]  S. Orszag,et al.  High-order splitting methods for the incompressible Navier-Stokes equations , 1991 .

[41]  Anthony T. Patera,et al.  Variational formulation of three‐dimensional viscous free‐surface flows: Natural imposition of surface tension boundary conditions , 1991 .