Collision: Modeling, simulation and identification of robotic manipulators interacting with environments

The performance of many robotic tasks depends greatly on their dynamic collision behavior. This article presents a simple method for modeling and simulating collision behavior in manipulators. The main goal in this task is to provide informative contact models. The proposed models encompasscollision attributes which comprise not only (local) contact surface properties but also structural properties of the environmental object and the manipulator. With this method, the entire dynamic and interactive motion of the manipulator with the environmental object can be simulated effectively. This is verified by our simulation results. To facilitate our investigation, a 2 DOF planar elbow manipulator with PD control is considered in the simulations as well as theoretical analysis. The simulation results are used to highlight the collision attributes which affect collision behavior and to study the effects of these attributes on the manipulator-work environment safety and performance. On the other hand, the reliable operation of intelligent robotic systems in unstructured environments requires the estimation of collision attributes before the prediction of the collision behavior can be completed. For this purpose, we introduce the notion ofcollision identification. The present paper introduces a framework for collision identification in robotic tasks. The proposed framework is based on Artificial Neural Networks (ANNs) and provides fast and relatively reliable identification of the collision attributes. The simulation results are used to generate training data for the set of ANNs. A modularized ANN-based architecture is also developed to reduce the training effort and to increase the accuracy of ANNs. The test results indicate the satisfactory performance of the proposed collision identification system.

[1]  I. S. Sokolnikoff Mathematical theory of elasticity , 1946 .

[2]  N. Ness Time-dependent buckling of a uniformly heated column , 1954 .

[3]  B. D. Coleman,et al.  An approximation theorem for functionals, with applications in continuum mechanics , 1960 .

[4]  F. P. Bowden,et al.  The Friction and Lubrication of Solids , 1964 .

[5]  R. Plunkett,et al.  Formulas for Stress and Strain , 1965 .

[6]  Joseph Edward Shigley,et al.  Mechanical engineering design , 1972 .

[7]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[8]  Cyril M. Harris,et al.  Shock and vibration handbook , 1976 .

[9]  F. F. Ling,et al.  Impact Wear of Materials , 1976 .

[10]  J. Wittenburg,et al.  Dynamics of systems of rigid bodies , 1977 .

[11]  M. Quack,et al.  J. Wittenburg: Dynamics of Systems of Rigid Bodies. Teubner Verlag. Stuttgart 1977. 224 Seiten, Preis: DM 74,- , 1978 .

[12]  J. Y. S. Luh,et al.  Resolved-acceleration control of mechanical manipulators , 1980 .

[13]  T. Fujita,et al.  Periodic Vibration and Impact Characteristics of a Nonlinear System with Collision , 1980 .

[14]  John J. Craig,et al.  Hybrid position/force control of manipulators , 1981 .

[15]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[16]  E. Freund Fast Nonlinear Control with Arbitrary Pole-Placement for Industrial Robots and Manipulators , 1982 .

[17]  J. Y. S. Luh A Scheme for Collision Avoidance with Minimum Distance Traveling for Industrial Robots , 1984, J. Field Robotics.

[18]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation , 1984, 1984 American Control Conference.

[19]  Richard S. Sutton,et al.  Training and Tracking in Robotics , 1985, IJCAI.

[20]  A. A. Maciejewski,et al.  Obstacle Avoidance , 2005 .

[21]  Yuan F. Zheng,et al.  Mathematical modeling of a robot collision with its environment , 1985, J. Field Robotics.

[22]  R L Klatzky,et al.  Identifying objects by touch: An “expert system” , 1985, Perception & psychophysics.

[23]  H. Harry Asada,et al.  Optimal compliance design for grinding robot tool holders , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[24]  Rolf Isermann,et al.  Parameter-adaptive control with configuration aids and supervision functions , 1985, Autom..

[25]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation: Part II—Implementation , 1985 .

[26]  Thomas B. Sheridan,et al.  Robust compliant motion for manipulators, part II: Design method , 1986, IEEE J. Robotics Autom..

[27]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[28]  G. J. Creus Viscoelasticity-Basic Theory and Applications to Concrete Structures , 1986 .

[29]  E. Haug,et al.  Dynamics of mechanical systems with Coulomb friction, stiction, impact and constraint addition-deletion—I theory , 1986 .

[30]  S. Shah Viscoelasticity — Basic Theory and Applications to Concrete Structures Creus G.T.(springer-Verlag, 1986) , 1986 .

[31]  Mark R. Cutkosky,et al.  Friction, Stability and the Design of Robotic Fingers , 1986 .

[32]  Thomas B. Sheridan,et al.  Robust compliant motion for manipulators, part I: The fundamental concepts of compliant motion , 1986, IEEE J. Robotics Autom..

[33]  Pradeep K. Khosla,et al.  Choosing sampling rates for robot control , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[34]  B. Gold,et al.  A Comparison of Hamming and Hopfield Neural Nets for Pattern Classification , 1987 .

[35]  Roy Featherstone,et al.  Robot Dynamics Algorithms , 1987 .

[36]  Richard P. Lippmann,et al.  An introduction to computing with neural nets , 1987 .

[37]  Jay Kahng,et al.  Impact force analysis in mechanical hand design , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[38]  S. Grossberg,et al.  Neural Dynamics of Category Learning and Recognition: Attention, Memory Consolidation, and Amnesia , 1987 .

[39]  Yu Wang,et al.  Modeling impact dynamics for robotic operations , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[40]  N. G. Mccrum,et al.  Principles Of Polymer Engineering , 1988 .

[41]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[42]  Neville Hogan,et al.  Robust control of dynamically interacting systems , 1988 .

[43]  Sharon A. Stansfield,et al.  A Robotic Perceptual System Utilizing Passive Vision and Active Touch , 1988, Int. J. Robotics Res..

[44]  B. Bavarian,et al.  Introduction to neural networks for intelligent control , 1988, IEEE Control Systems Magazine.

[45]  J. Edward Colgate The control of dynamically interacting systems , 1988 .

[46]  Neville Hogan,et al.  On the stability of manipulators performing contact tasks , 1988, IEEE J. Robotics Autom..

[47]  N. H. McClamroch,et al.  Feedback stabilization and tracking of constrained robots , 1988 .

[48]  Mitsuo Kawato,et al.  Feedback-error-learning neural network for trajectory control of a robotic manipulator , 1988, Neural Networks.

[49]  Robert Hecht-Nielsen,et al.  Applications of counterpropagation networks , 1988, Neural Networks.

[50]  Jean-Jacques E. Slotine,et al.  Neural Network Control of Unknown Nonlinear Systems , 1989, 1989 American Control Conference.

[51]  Jenq-Neng Hwang,et al.  Neural network architectures for robotic applications , 1989, IEEE Trans. Robotics Autom..

[52]  Mark W. Spong,et al.  Robot dynamics and control , 1989 .

[53]  C.W. Anderson,et al.  Learning to control an inverted pendulum using neural networks , 1989, IEEE Control Systems Magazine.

[54]  Klaus Schulten,et al.  Topology-conserving maps for learning visuo-motor-coordination , 1989, Neural Networks.

[55]  Alex Waibel,et al.  Consonant recognition by modular construction of large phonemic time-delay neural networks , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[56]  C. Harris,et al.  Shock and Vibration Handbook (3rd ed.) , 1989 .

[57]  Farzad Pourboghrat,et al.  Toward the intelligent control of robots , 1990, J. Intell. Robotic Syst..

[58]  P.J. Antsaklis,et al.  Parameter learning for performance adaptation , 1990, IEEE Control Systems Magazine.

[59]  Robert J. Anderson,et al.  Dynamic damping control: implementation issues and simulation results , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[60]  Sharon A. Stansfield,et al.  Knowledge-based robotic grasping , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[61]  Panos J. Antsaklis,et al.  Neural networks for control systems , 1990, IEEE Trans. Neural Networks.

[62]  Ian D. Walker,et al.  The use of kinematic redundancy in reducing impact and contact effects in manipulation , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[63]  Mo M. Jamshidi,et al.  Neural networks in robotics: A survey , 1990, J. Intell. Robotic Syst..

[64]  John T. Wen,et al.  Stability Analysis of Position and Force Control Problems for Robot Arms , 1990, 1990 American Control Conference.

[65]  Peter K. Allen,et al.  Acquisition and interpretation of 3-D sensor data from touch , 1990, IEEE Trans. Robotics Autom..

[66]  James K. Mills,et al.  Manipulator transition to and from contact tasks: a discontinuous control approach , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[67]  A. Brandt,et al.  Applications of neural networks for trajectory control of robots , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[68]  F. Janabi-Sharifi,et al.  On the stability of a spinning viscoelastic column , 1991 .

[69]  Günther Schmidt,et al.  A comparison of model-based path control algorithms for direct-drive SCARA robots , 1992, J. Intell. Robotic Syst..

[70]  Homayoun Seraji Task-based configuration control of redundant manipulators , 1992, J. Field Robotics.

[71]  Nariman Sepehri,et al.  Generalized predictive control of a robotic manipulator with hydraulic actuators , 1992, Robotica.

[72]  Martin Peckerar,et al.  An analog neural network solution to the inverse problem of 'early taction' , 1992, IEEE Trans. Robotics Autom..

[73]  Grantham K. H. Pang,et al.  A multi-layered learning model , 1993, J. Intell. Robotic Syst..