Synthesis of szentiamide, a depsipeptide from entomopathogenic Xenorhabdus szentirmaii with activity against Plasmodium falciparum

The synthesis of the recently characterized depsipeptide szentiamide (1), which is produced by the entomopathogenic bacterium Xenorhabdus szentirmaii, is described. Whereas no biological activity was previously identified for 1, the material derived from the efficient synthesis enabled additional bioactivity tests leading to the identification of a notable activity against insect cells and Plasmodium falciparum, the causative agent of malaria.

[1]  H. Bode,et al.  Determination of the absolute configuration of peptide natural products by using stable isotope labeling and mass spectrometry. , 2012, Chemistry.

[2]  Roy D. Welch,et al.  The Entomopathogenic Bacterial Endosymbionts Xenorhabdus and Photorhabdus: Convergent Lifestyles from Divergent Genomes , 2011, PloS one.

[3]  R. Müller,et al.  Cytotoxic Fatty Acid Amides from Xenorhabdus , 2011, Chembiochem : a European journal of chemical biology.

[4]  C. Walsh,et al.  NRPS Substrate Promiscuity Diversifies the Xenematides , 2011, Organic letters.

[5]  J. Imhoff,et al.  Szentiamide, an N-formylated Cyclic Depsipeptide from Xenorhabdus szentirmaii DSM 16338T , 2011, Natural product communications.

[6]  Wei Zhang,et al.  Synthesis and biological evaluation of analogues of the marine cyclic depsipeptide obyanamide , 2011, Journal of peptide science : an official publication of the European Peptide Society.

[7]  Michael Karas,et al.  Structure elucidation and biosynthesis of lysine-rich cyclic peptides in Xenorhabdus nematophila. , 2011, Organic & biomolecular chemistry.

[8]  M. Brimble,et al.  Synthesis and assignment of stereochemistry of the antibacterial cyclic peptide xenematide. , 2011, Organic & biomolecular chemistry.

[9]  O. May,et al.  Total synthesis of the marine-derived cyclic depsipeptide alternaramide , 2011 .

[10]  D. Mabey,et al.  Neglected tropical diseases. , 2010, British Medical Bulletin.

[11]  D. Taşdemir,et al.  Inhibitory Activity of Marine Sponge-Derived Natural Products against Parasitic Protozoa , 2010, Marine drugs.

[12]  H. Bode Entomopathogenic bacteria as a source of secondary metabolites. , 2009, Current opinion in chemical biology.

[13]  J. Imhoff,et al.  Linear and cyclic peptides from the entomopathogenic bacterium Xenorhabdus nematophilus. , 2008, Journal of natural products.

[14]  H. Goodrich-Blair,et al.  Friend and foe: the two faces of Xenorhabdus nematophila , 2007, Nature Reviews Microbiology.

[15]  H. Goodrich-Blair They've got a ticket to ride: Xenorhabdus nematophila-Steinernema carpocapsae symbiosis. , 2007, Current opinion in microbiology.

[16]  G. Bou,et al.  Evaluation of different methods for detecting methicillin (oxacillin) resistance in Staphylococcus aureus. , 2005, The Journal of antimicrobial chemotherapy.

[17]  A. Danchin,et al.  The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens , 2003, Nature Biotechnology.

[18]  M. Harré,et al.  An efficient method for activation and recycling of trityl resins , 1999 .

[19]  S. H. Rhodes,et al.  Biologically active metabolites from Xenorhabdus spp., Part 1. Dithiolopyrrolone derivatives with antibiotic activity. , 1991, Journal of natural products.

[20]  K. Barlos,et al.  Veresterung von partiell geschützten peptid-fragmenten mit harzen. Einsatz von 2-chlortritylchlorid zur synthese von Leu15 -gastrin I , 1989 .

[21]  W. Richardson,et al.  Identification of an anthraquinone pigment and a hydroxystilbene antibiotic from Xenorhabdus luminescens , 1988, Applied and environmental microbiology.