Toward Sparse Coding on Cosine Distance

Sparse coding is a regularized least squares solution using the L1 or L0 constraint, based on the Euclidean distance between original and reconstructed signals with respect to a predefined dictionary. The Euclidean distance, however, is not a good metric for many feature descriptors, especially histogram features, e.g. many visual features including SIFT, HOG, LBP and Bag-of-visual-words. In contrast, cosine distance is a more appropriate metric for such features. To leverage the benefit of the cosine distance in sparse coding, we formulate a new sparse coding objective function based on approximate cosine distance by constraining a norm of the reconstructed signal to be close to the norm of the original signal. We evaluate our new formulation on three computer vision datasets (UCF101 Action dataset, AR dataset and Extended YaleB dataset) and show improvements over the Euclidean distance based objective.

[1]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Trevor Darrell,et al.  Transfer learning for image classification with sparse prototype representations , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Yihong Gong,et al.  Linear spatial pyramid matching using sparse coding for image classification , 2009, CVPR.

[4]  Cordelia Schmid,et al.  Evaluation of Local Spatio-temporal Features for Action Recognition , 2009, BMVC.

[5]  Chunfeng Yuan,et al.  Multi-task Sparse Learning with Beta Process Prior for Action Recognition , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[7]  Li Bai,et al.  Cosine Similarity Metric Learning for Face Verification , 2010, ACCV.

[8]  Thomas Mensink,et al.  Improving the Fisher Kernel for Large-Scale Image Classification , 2010, ECCV.

[9]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[11]  Leonidas J. Guibas,et al.  A metric for distributions with applications to image databases , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[12]  Beiji Zou,et al.  Shape-Based Trademark Retrieval Using Cosine Distance Method , 2008, 2008 Eighth International Conference on Intelligent Systems Design and Applications.

[13]  James M. Rehg,et al.  Beyond the Euclidean distance: Creating effective visual codebooks using the Histogram Intersection Kernel , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[14]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Liang-Tien Chia,et al.  Multi-layer group sparse coding — For concurrent image classification and annotation , 2011, CVPR 2011.

[16]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[17]  Rajat Raina,et al.  Efficient sparse coding algorithms , 2006, NIPS.

[18]  Yihong Gong,et al.  Locality-constrained Linear Coding for image classification , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[19]  EnganKjersti,et al.  Dictionary learning algorithms for sparse representation , 2003 .

[20]  D Ashok Kumar,et al.  Comparative Study on CBIR based by Color Histogram, Gabor and Wavelet Transform , 2011 .

[21]  Chi-Ho Chan,et al.  Sparse representation of (Multiscale) histograms for face recognition robust to registration and illumination problems , 2010, 2010 IEEE International Conference on Image Processing.

[22]  Joseph F. Murray,et al.  Dictionary Learning Algorithms for Sparse Representation , 2003, Neural Computation.

[23]  A. Martínez,et al.  The AR face databasae , 1998 .

[24]  Tanaya Guha,et al.  Learning Sparse Representations for Human Action Recognition , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Le Li,et al.  SENSC: a Stable and Efficient Algorithm for Nonnegative Sparse Coding: SENSC: a Stable and Efficient Algorithm for Nonnegative Sparse Coding , 2009 .

[26]  Mubarak Shah,et al.  UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild , 2012, ArXiv.

[27]  Larry S. Davis,et al.  Learning a discriminative dictionary for sparse coding via label consistent K-SVD , 2011, CVPR 2011.

[28]  Chris H. Q. Ding,et al.  Angular Decomposition , 2011, IJCAI.

[29]  Cordelia Schmid,et al.  Action recognition by dense trajectories , 2011, CVPR 2011.

[30]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[31]  Yongdong Zhang,et al.  Binary Code Ranking with Weighted Hamming Distance , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Junzhou Huang,et al.  Robust tracking using local sparse appearance model and K-selection , 2011, CVPR 2011.

[33]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[34]  Lei Zhang,et al.  Gabor Feature Based Sparse Representation for Face Recognition with Gabor Occlusion Dictionary , 2010, ECCV.

[35]  Shuicheng Yan,et al.  Exploring Feature Descritors for Face Recognition , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[36]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[37]  Shihong Lao,et al.  Discriminant analysis in correlation similarity measure space , 2007, ICML '07.

[38]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[40]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[41]  LinLin Shen,et al.  A review on Gabor wavelets for face recognition , 2006, Pattern Analysis and Applications.

[42]  Rama Chellappa,et al.  Sparse dictionary-based representation and recognition of action attributes , 2011, 2011 International Conference on Computer Vision.