Born-Oppenheimer approximation and beyond for time-dependent electronic processes.

Explicit computations of electronic motion in time and space are gradually becoming feasible and available. The knowledge of this motion is of relevance by itself but is also important for understanding available and predicting future experiments on the electronic time scale. In electronic processes of interest, usually several and even many stationary electronic states participate and the obvious question arises on how to describe the accompanying quantum nuclear dynamics at least on the time scale of the process. In this work, we attempt to study the nuclear dynamics in the framework of a fully time-dependent Born-Oppenheimer approximation. Additionally, we attempt to go beyond this approximation by introducing the coupling of several electronic wavepackets by the nuclear wavepackets. In this context, we also discuss a time-dependent transformation to diabatic electronic wavepackets. A simple but critical model of charge transfer is analyzed in some detail on various levels of approximation and also solved exactly.

[1]  T. Klamroth,et al.  The multiconfiguration time-dependent Hartree-Fock method for quantum chemical calculations. , 2005, The Journal of chemical physics.

[2]  W. Kutzelnigg The adiabatic approximation I. The physical background of the Born-Handy ansatz , 1997 .

[3]  Angel Rubio,et al.  Excited states dynamics in time-dependent density functional theory , 2002, cond-mat/0206307.

[4]  H. Sambe Steady States and Quasienergies of a Quantum-Mechanical System in an Oscillating Field , 1973 .

[5]  M. Nest Quantum carpets and correlated dynamics of several fermions (6 pages) , 2006 .

[6]  L. Cederbaum,et al.  Migration of holes: Formalism, mechanisms, and illustrative applications , 2003 .

[7]  F. Bernardi,et al.  A Computational Strategy for Organic Photochemistry , 2002 .

[8]  A. Stolow Femtosecond time-resolved photoelectron spectroscopy of polyatomic molecules. , 2003, Annual review of physical chemistry.

[9]  L. Cederbaum,et al.  Universal attosecond response to the removal of an electron. , 2005, Physical review letters.

[10]  L. Cederbaum,et al.  Multielectron wave-packet propagation: general theory and application. , 2005, The Journal of chemical physics.

[11]  Lorenz S. Cederbaum,et al.  Multimode Molecular Dynamics Beyond the Born‐Oppenheimer Approximation , 2007 .

[12]  Paul-Gerhard Reinhard,et al.  NONLINEAR ELECTRON DYNAMICS IN METAL CLUSTERS , 2000 .

[13]  U. Manthe,et al.  Wave‐packet dynamics within the multiconfiguration Hartree framework: General aspects and application to NOCl , 1992 .

[14]  U. Manthe,et al.  The multi-configurational time-dependent Hartree approach , 1990 .

[15]  L. Cederbaum Symmetry breaking and localization in resonant photon emission , 1995 .

[16]  L. Cederbaum,et al.  Trapping of cold atoms in optical lattices by the quadrupole force , 2007 .

[17]  C. Mead,et al.  Conditions for the definition of a strictly diabatic electronic basis for molecular systems , 1982 .

[18]  Tsuyoshi Kato,et al.  Time-dependent multiconfiguration theory for electronic dynamics of molecules in an intense laser field , 2004 .

[19]  T. Seideman,et al.  Alignment of molecules by lasers: derivation of the Hamiltonian within the (t, t′) formalism , 2006 .

[20]  Ahmed H. Zewail Prof. Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond Using Ultrafast Lasers (Nobel Lecture) , 2000 .

[21]  R. Schmidt,et al.  Non-adiabatic quantum molecular dynamics: ionization of many-electron systems , 2005, quant-ph/0509112.

[22]  C. Mead,et al.  The geometric phase in molecular systems , 1992 .

[23]  P. Corkum,et al.  Probing molecular dynamics with attosecond resolution using correlated wave packet pairs , 2003, Nature.

[24]  L. Cederbaum,et al.  Adiabatic and quasidiabatic states in a Gauge theoretical framework , 2007 .

[25]  Othmar Koch,et al.  Correlated multielectron systems in strong laser fields: A multiconfiguration time-dependent Hartree-Fock approach , 2005 .

[26]  M. Beck,et al.  The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propa , 1999 .

[27]  R. Schmidt,et al.  Non-adiabatic quantum molecular dynamics: basic formalism and case study , 1996 .

[28]  Theory of diatomic molecules in an external electromagnetic field from first quantum mechanical principles. , 2006, The journal of physical chemistry. A.

[29]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[30]  L. Cederbaum,et al.  Dipole and quadrupole forces exerted on atoms in laser fields: The nonperturbative approach , 2006 .

[31]  A. Zewail,et al.  Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond Using Ultrafast Lasers (Nobel Lecture) Copyright((c)) The Nobel Foundation 2000. We thank the Nobel Foundation, Stockholm, for permission to print this lecture. , 2000, Angewandte Chemie.

[32]  G. Worth,et al.  Beyond Born-Oppenheimer: molecular dynamics through a conical intersection. , 2004, Annual review of physical chemistry.

[33]  Yngve Öhrn,et al.  Time-dependent theoretical treatments of the dynamics of electrons and nuclei in molecular systems , 1994 .

[34]  Tracing ultrafast interatomic electronic decay processes in real time and space. , 2006, Physical review letters.

[35]  D. Yarkony Diabolical conical intersections , 1996 .

[36]  G. Worth,et al.  Quantum molecular dynamics: propagating wavepackets and density operators using the multiconfiguration time-dependent Hartree method , 2003 .

[37]  A. Bandrauk,et al.  Dissociation, ionization, and Coulomb explosion of H2+ in an intense laser field by numerical integration of the time-dependent Schrödinger equation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[38]  Jürgen Zanghellini,et al.  An MCTDHF approach to multielectron dynamics in laser fields , 2003 .

[39]  U. Heinzmann,et al.  Time-resolved atomic inner-shell spectroscopy , 2002, Nature.

[40]  M. Baer,et al.  The role of degenerate states in chemistry , 2002 .

[41]  W. Heisenberg,et al.  Zur Quantentheorie der Molekeln , 1924 .

[42]  P. Corkum,et al.  Mapping attosecond electron wave packet motion. , 2005, Physical review letters.

[43]  D. Yarkony,et al.  Conical Intersections: Electronic Structure, Dynamics and Spectroscopy , 2004 .

[44]  C. Jungreuthmayer,et al.  Ionization dynamics of extended multielectron systems , 2004 .

[45]  H. C. Longuet-Higgins,et al.  Intersection of potential energy surfaces in polyatomic molecules , 1963 .

[46]  L. Cederbaum BORN–OPPENHEIMER APPROXIMATION AND BEYOND , 2004 .

[47]  C. Mead,et al.  Relative likelihood of encountering conical intersections and avoided intersections on the potential energy surfaces of polyatomic molecules , 2003 .