Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network

Abstract Efficient and high-fidelity prior sampling and inversion for complex geological media is still a largely unsolved challenge. Here, we use a deep neural network of the variational autoencoder type to construct a parametric low-dimensional base model parameterization of complex binary geological media. For inversion purposes, it has the attractive feature that random draws from an uncorrelated standard normal distribution yield model realizations with spatial characteristics that are in agreement with the training set. In comparison with the most commonly used parametric representations in probabilistic inversion, we find that our dimensionality reduction (DR) approach outperforms principle component analysis (PCA), optimization-PCA (OPCA) and discrete cosine transform (DCT) DR techniques for unconditional geostatistical simulation of a channelized prior model. For the considered examples, important compression ratios (200–500) are achieved. Given that the construction of our parameterization requires a training set of several tens of thousands of prior model realizations, our DR approach is more suited for probabilistic (or deterministic) inversion than for unconditional (or point-conditioned) geostatistical simulation. Probabilistic inversions of 2D steady-state and 3D transient hydraulic tomography data are used to demonstrate the DR-based inversion. For the 2D case study, the performance is superior compared to current state-of-the-art multiple-point statistics inversion by sequential geostatistical resampling (SGR). Inversion results for the 3D application are also encouraging.

[1]  G. Mariéthoz,et al.  Bayesian inverse problem and optimization with iterative spatial resampling , 2010 .

[2]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[3]  Louis J. Durlofsky,et al.  Data assimilation and uncertainty assessment for complex geological models using a new PCA-based parameterization , 2015, Computational Geosciences.

[4]  D. Mallants,et al.  Efficient posterior exploration of a high‐dimensional groundwater model from two‐stage Markov chain Monte Carlo simulation and polynomial chaos expansion , 2013 .

[5]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[6]  Vivek K. Goyal,et al.  Compressed History Matching: Exploiting Transform-Domain Sparsity for Regularization of Nonlinear Dynamic Data Integration Problems , 2010 .

[7]  Eric Laloy,et al.  Effective structural descriptors for natural and engineered radioactive waste confinement barriers , 2017 .

[8]  P. Kitanidis,et al.  Hydraulic conductivity imaging from 3‐D transient hydraulic tomography at several pumping/observation densities , 2013 .

[9]  A. W. Harbaugh MODFLOW-2005 : the U.S. Geological Survey modular ground-water model--the ground-water flow process , 2005 .

[10]  Lianlin Li,et al.  Sparse geologic dictionaries for subsurface flow model calibration: Part I. Inversion formulation , 2012 .

[11]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[12]  L. Y. Hu,et al.  Multiple‐point geostatistics for modeling subsurface heterogeneity: A comprehensive review , 2008 .

[13]  N. Linde,et al.  Image synthesis with graph cuts: a fast model proposal mechanism in probabilistic inversion , 2016, 1701.01593.

[14]  Marita Stien,et al.  Facies Modeling Using a Markov Mesh Model Specification , 2011 .

[15]  O. Dorn,et al.  History matching of petroleum reservoirs using a level set technique , 2008 .

[16]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[17]  P. Kitanidis Quasi‐Linear Geostatistical Theory for Inversing , 1995 .

[18]  Salvatore Torquato,et al.  Two‐point cluster function for continuum percolation , 1988 .

[19]  C. W. Harper,et al.  A FORTRAN IV program for comparing ranking algorithms in quantitative biostratigraphy , 1984 .

[20]  Louis J. Durlofsky,et al.  A New Differentiable Parameterization Based on Principal Component Analysis for the Low-Dimensional Representation of Complex Geological Models , 2014, Mathematical Geosciences.

[21]  John Salvatier,et al.  Theano: A Python framework for fast computation of mathematical expressions , 2016, ArXiv.

[22]  L. Durlofsky,et al.  Efficient real-time reservoir management using adjoint-based optimal control and model updating , 2006 .

[23]  J. Gómez-Hernández,et al.  To be or not to be multi-Gaussian? A reflection on stochastic hydrogeology , 1998 .

[24]  Behnam Jafarpour,et al.  Sparse Randomized Maximum Likelihood (SpRML) for subsurface flow model calibration and uncertainty quantification , 2014 .

[25]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[26]  Dean S. Oliver,et al.  Reparameterization Techniques for Generating Reservoir Descriptions Conditioned to Variograms and Well-Test Pressure Data , 1996 .

[27]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[28]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[29]  Eric Laloy,et al.  Mass conservative three‐dimensional water tracer distribution from Markov chain Monte Carlo inversion of time‐lapse ground‐penetrating radar data , 2012 .

[30]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[31]  Pejman Tahmasebi,et al.  Multiple-point geostatistical modeling based on the cross-correlation functions , 2012, Computational Geosciences.

[32]  Gregoire Mariethoz,et al.  Merging parallel tempering with sequential geostatistical resampling for improved posterior exploration of high-dimensional subsurface categorical fields , 2016 .

[33]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[34]  Albert C. Reynolds,et al.  Monte Carlo simulation of permeability fields and reservoir performance predictions with SVD parameterization in RML compared with EnKF , 2011 .

[35]  Dean S. Oliver,et al.  Conditioning Permeability Fields to Pressure Data , 1996 .

[36]  Colin Raffel,et al.  Lasagne: First release. , 2015 .

[37]  A. Journel,et al.  The Necessity of a Multiple-Point Prior Model , 2007 .

[38]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[39]  Xue Li,et al.  Patch‐based iterative conditional geostatistical simulation using graph cuts , 2016 .

[40]  Sebastien Strebelle,et al.  Conditional Simulation of Complex Geological Structures Using Multiple-Point Statistics , 2002 .

[41]  R. M. Srivastava,et al.  Multivariate Geostatistics: Beyond Bivariate Moments , 1993 .

[42]  T. Hansen,et al.  Using geostatistics to describe complex a priori information for inverse problems , 2008 .

[43]  A. Awotunde,et al.  Reservoir Description with Integrated Multiwell Data Using Two-Dimensional Wavelets , 2013, Mathematical Geosciences.

[44]  J. Vrugt,et al.  Summary statistics from training images as prior information in probabilistic inversion , 2015, 1701.01376.

[45]  Alex Graves,et al.  DRAW: A Recurrent Neural Network For Image Generation , 2015, ICML.

[46]  D. Higdon,et al.  Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling , 2009 .

[47]  J. A. Vrugt,et al.  Distributed Soil Moisture from Crosshole Ground‐Penetrating Radar Travel Times using Stochastic Inversion , 2013, 1701.01634.

[48]  Eulogio Pardo-Igúzquiza,et al.  CONNEC3D: a computer program for connectivity analysis of 3D random set models☆ , 2003 .

[49]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[50]  T. Hansen,et al.  Inverse problems with non-trivial priors: efficient solution through sequential Gibbs sampling , 2012, Computational Geosciences.

[51]  Jef Caers,et al.  Direct forecasting of reservoir performance using production data without history matching , 2017, Computational Geosciences.

[52]  J. Caers,et al.  Comparing Training-Image Based Algorithms Using an Analysis of Distance , 2014, Mathematical Geosciences.

[53]  Jasper A. Vrugt,et al.  High‐dimensional posterior exploration of hydrologic models using multiple‐try DREAM(ZS) and high‐performance computing , 2012 .

[54]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[55]  Gregoire Mariethoz,et al.  The Direct Sampling method to perform multiple‐point geostatistical simulations , 2010 .

[56]  L. Durlofsky,et al.  Kernel Principal Component Analysis for Efficient, Differentiable Parameterization of Multipoint Geostatistics , 2008 .

[57]  Eric Laloy,et al.  Probabilistic inference of multi‐Gaussian fields from indirect hydrological data using circulant embedding and dimensionality reduction , 2015 .

[58]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.