Taboo search: an approach to the multiple minima problem.

Described here is a method, based on Glover's taboo search for discrete functions, of solving the multiple minima problem for continuous functions. As demonstrated by model calculations, the algorithm avoids entrapment in local minima and continues the search to give a near-optimal final solution. Unlike other methods of global optimization, this procedure is generally applicable, easy to implement, derivative-free, and conceptually simple.

[1]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[2]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[3]  H. Zimmermann Towards global optimization 2: L.C.W. DIXON and G.P. SZEGÖ (eds.) North-Holland, Amsterdam, 1978, viii + 364 pages, US $ 44.50, Dfl. 100,-. , 1979 .

[4]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[5]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[6]  Geometry optimization by simulated annealing , 1987 .

[7]  Panos M. Pardalos,et al.  Constrained Global Optimization: Algorithms and Applications , 1987, Lecture Notes in Computer Science.

[8]  L. Wille Minimum-energy configurations of atomic clusters: new results obtained by simulated annealing , 1987 .

[9]  M. Parrinello,et al.  The structure of selenium clusters — Se3 TO Se8 , 1987 .

[10]  R. Fletcher Practical Methods of Optimization , 1988 .

[11]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[12]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[13]  H. Scheraga,et al.  On the multiple-minima problem in the conformational analysis of molecules: deformation of the potential energy hypersurface by the diffusion equation method , 1989 .

[14]  M. Zerner,et al.  Newton Based Optimization Methods for Obtaining Molecular Conformation , 1989 .

[15]  Fred Glover,et al.  Artificial intelligence, heuristic frameworks and tabu search , 1990 .

[16]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[17]  Fred Glover,et al.  Tabu Search: A Tutorial , 1990 .

[18]  P. Dutta,et al.  Global optimization of molecular geometry: A new avenue involving the use of Metropolis simulated annealing , 1991 .

[19]  Panos M. Pardalos,et al.  Recent Advances in Global Optimization , 1991 .

[20]  Emile H. L. Aarts,et al.  Global optimization and simulated annealing , 1991, Math. Program..

[21]  Wolfgang Linert,et al.  Numerical Minimization Procedures in Molecular Mechanics: Structural Modelling of the Solvation of -Cyclodextrin , 1992, Comput. Chem..

[22]  R. Judson Teaching polymers to fold , 1992 .

[23]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[24]  M. Snow Powerful simulated‐annealing algorithm locates global minimum of protein‐folding potentials from multiple starting conformations , 1992 .

[25]  R Unger,et al.  Genetic algorithms for protein folding simulations. , 1992, Journal of molecular biology.

[26]  R. Berry POTENTIAL SURFACES AND DYNAMICS : WHAT CLUSTERS TELL US , 1993 .

[27]  Fred W. Glover,et al.  A user's guide to tabu search , 1993, Ann. Oper. Res..

[28]  Yong L. Xiao,et al.  Genetic algorithm: a new approach to the prediction of the structure of molecular clusters , 1993 .

[29]  Richard S. Judson,et al.  Conformational searching methods for small molecules. II. Genetic algorithm approach , 1993, J. Comput. Chem..

[30]  Fred W. Glover,et al.  Tabu Search for Nonlinear and Parametric Optimization (with Links to Genetic Algorithms) , 1994, Discret. Appl. Math..

[31]  J. Ben Rosen,et al.  Computational comparison of two methods for constrained global optimization , 1994, J. Glob. Optim..

[32]  Jacek Klinowski,et al.  Taboo Search: An Approach to the Multiple Minima Problem , 1995, Science.

[33]  J. Doye,et al.  The effect of the range of the potential on the structures of clusters , 1995 .

[34]  Fred W. Glover,et al.  Genetic algorithms and tabu search: Hybrids for optimization , 1995, Comput. Oper. Res..

[35]  Athanassios Siapas,et al.  Criticality and Parallelism in Combinatorial Optimization , 1996, Science.

[36]  S. Hong,et al.  Calculation of excess free energy from the averaged effective acceptance ratio for the Lennard-Jones fluid and the inverse twelve fluid , 1997 .

[37]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[38]  David E. Clark,et al.  A comparison of heuristic search algorithms for molecular docking , 1997, J. Comput. Aided Mol. Des..

[39]  Seung Do Hong,et al.  Restricted random search method based on taboo search in the multiple minima problem , 1997 .

[40]  J. Doye,et al.  Surveying a potential energy surface by eigenvector-following , 1997 .

[41]  Xin Liu,et al.  Protein Conformation of a Lattice Model Using Tabu Search , 1997, J. Glob. Optim..

[42]  Fred W. Glover,et al.  A Template for Scatter Search and Path Relinking , 1997, Artificial Evolution.