Emergence and Bifurcations of Lyapunov Manifolds in Nonlinear Wave Equations

Persistence and bifurcations of Lyapunov manifolds can be studied by a combination of averaging-normalization and numerical bifurcation methods. This can be extended to infinite-dimensional cases when using suitable averaging theorems. The theory is applied to the case of a parametrically excited wave equation. We find fast dynamics in a finite, resonant part of the spectrum and slow dynamics elsewhere. The resonant part corresponds with an almost-invariant manifold and displays bifurcations into a wide variety of phenomena among which are 2- and 3-tori.

[1]  Y. Kuznetsov,et al.  New features of the software MatCont for bifurcation analysis of dynamical systems , 2008 .

[2]  F. Verhulst Methods and applications of singular perturbations , 2005 .

[3]  Peter W. Bates,et al.  Existence and Persistence of Invariant Manifolds for Semiflows in Banach Space , 1998 .

[4]  Peter W. Bates,et al.  Persistence of Overflowing Manifolds for Semiflow , 1999 .

[5]  F. Verhulst Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics , 2010 .

[6]  Roeland Peter Buitelaar The method of averaging in Banach spaces : theory and applications = De middelingsmethode in Banachruimten : theorie en toepassingen , 1993 .

[7]  Ferdinand Verhulst,et al.  Symmetry and Resonance in Hamiltonian Systems , 2001, SIAM J. Appl. Math..

[8]  Philip Holmes,et al.  The limited effectiveness of normal forms: a critical review and extension of local bifurcation studies of the Brusselator PDE , 1997 .

[9]  Chongchun Zeng,et al.  PERSISTENCE OF INVARIANT MANIFOLDS FOR PERTURBATIONS OF SEMIFLOWS WITH SYMMETRY , 1999 .

[10]  Peter W. Bates,et al.  Invariant Manifolds for Semilinear Partial Differential Equations , 1989 .

[11]  Cecilia S. Yarur Existence of continuous and singular ground states for semilinear elliptic systems , 1998 .

[12]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[13]  Y. Kuznetsov Elements of applied bifurcation theory (2nd ed.) , 1998 .

[14]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[15]  R. H. Rand,et al.  Dynamics of a nonlinear parametrically excited partial differential equation. , 1999, Chaos.

[16]  Govind Menon,et al.  Infinite Dimensional Geometric Singular Perturbation Theory for the Maxwell-Bloch Equations , 2001, SIAM J. Math. Anal..

[17]  E. Sanchez-Palencia,et al.  Methode de centrage-estimation de l'erreur et comportement des trajectoires dans l'espace des phases , 1976 .

[18]  Edriss S. Titi,et al.  C1Approximations of Inertial Manifolds for Dissipative Nonlinear Equations , 1996 .