Pivot point-based control for active rear-wheel steering in passenger vehicles

ABSTRACT This paper presents a new application of active rear-wheel steering control to improve the lateral vehicle behaviour. In the state of the art, yaw or lateral velocity is used as control variable that means one degree of freedom being not directly controlled. A worse subjective impressions due to movements in the rear end of the vehicle during strong counter-steering are a consequence. To avoid this effect in urban surroundings, an innovative structure to control the pivot point distance of the vehicle is proposed. In this case the coupled elementary states yaw and lateral velocity can be influenced based on a higher level criteria. Analysis show that pivot point fixing provides a comprehensible reference behaviour. Solving the issue of singularity during disappearing yaw movement is the basis to design a performant modified feedforward input–output linearisation. An analytic stability analysis of the internal dynamics shows system immanent limitations which do not influence the target of improving the lateral vehicle dynamics in urban manoeuvres. Finally, the advantages of pivot-based control are highlighted by a comparison with state of the art rear axle control.

[1]  Takaaki Hagiwara,et al.  Proportional- Derivative controller , 2011 .

[2]  Edmund Dr Donges,et al.  FUNKTION UND SICHERHEITSKONZEPT DER AKTIVEN HINTERACHSKINEMATIK VON BMW , 1990 .

[3]  Stefan Hahn,et al.  Two-Degrees-of-Freedom Lateral Vehicle Control using Nonlinear Model Based Disturbance Compensation , 2016 .

[4]  Martin Horn,et al.  Improving vehicle dynamics by active rear wheel steering systems , 2009 .

[5]  Toshihiro Hiraoka,et al.  Automatic path-tracking controller of a four-wheel steering vehicle , 2009 .

[6]  William Leithead,et al.  Control of Sideslip and Yaw Rate in Cars Equipped with 4-Wheel Steer-by-Wire , 2004 .

[7]  Jürgen Ackermann,et al.  Robust yaw damping of cars with front and rear wheel steering , 1993, IEEE Trans. Control. Syst. Technol..

[8]  Dieter Ammon,et al.  Modellbildung und Systementwicklung in der Fahrzeugdynamik , 1997 .

[9]  S. Fuchshumer,et al.  Nonlinear Vehicle Dynamics Control - A Flatness Based Approach , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[10]  Lars König,et al.  Entwicklung einer integrierten Fahrdynamikregelung , 2013 .

[11]  T. Bünte,et al.  Beiträge zur robusten Lenkregelung von Personenkraftwagen , 1998 .

[12]  Norhazimi Hamzah,et al.  A Review of Active Yaw Control System for Vehicle Handling and Stability Enhancement , 2014 .

[13]  Oliver Öttgen Zur modellgestützten Entwicklung eines mechatronischen Fahrwerkregelungssystems für Personenkraftwagen , 2005 .

[14]  Ferdinand Svaricek,et al.  Nulldynamik linearer und nichtlinearer Systeme: Definitionen, Eigenschaften und Anwendungen (Zero Dynamics of Linear and Nonlinear Systems: Definitions, Properties and Applications) , 2006, Autom..

[15]  Bo Xie Regulation and tracking control of nonminimum phase systems , 2008 .

[16]  Jesse B. Hoagg,et al.  Nonminimum-phase zeros - much to do about nothing - classical control - revisited part II , 2007, IEEE Control Systems.

[17]  Mauro Velardocchia,et al.  An Innovative Control Logic for a Four Wheel Steer Vehicle - Part 1: Analysis and Design , 2005 .

[18]  Anton Obermüller,et al.  Modellbasierte Fahrzustandsschätzung zur Ansteuerung einer aktiven Hinterachskinematik , 2012 .

[19]  Steffen Wagner,et al.  Design and assessment of optimal feedforward control for active steering configurations in passenger vehicles , 2017 .

[20]  Hans B. Pacejka,et al.  Tire and Vehicle Dynamics , 1982 .

[21]  Dieter Bestle,et al.  Optimisation of lateral car dynamics taking into account parameter uncertainties , 2014 .

[22]  Hans B. Pacejka Semi-empirical tyre models , 2006 .

[23]  Steffen Wagner,et al.  Nonlinear controller design based on feedforward exact input-output linearization for active rear-wheel steering in passenger vehicles , 2016, 2016 European Control Conference (ECC).

[24]  Gunter Nitzsche,et al.  Design of a nonlinear trailer steering controller , 2014, 2014 IEEE Intelligent Vehicles Symposium Proceedings.

[25]  H. Nijmeijer,et al.  Improving yaw dynamics by feedforward rear wheel steering , 2008, 2008 IEEE Intelligent Vehicles Symposium.

[26]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .

[27]  J. Karl Hedrick,et al.  Control of nonlinear non-minimum phase systems with input-output linearization , 2015, 2015 American Control Conference (ACC).

[28]  C. Panjapornpon,et al.  Control of non-minimum-phase nonlinear systems through constrained input-output linearization , 2006, 2006 American Control Conference.

[29]  N. Hamzah,et al.  Yaw stability improvement for four-wheel active steering vehicle using sliding mode control , 2012, 2012 IEEE 8th International Colloquium on Signal Processing and its Applications.

[30]  Veit Hagenmeyer,et al.  A new approach to inversion-based feedforward control design for nonlinear systems , 2005, Autom..