AFMPB: An adaptive fast multipole Poisson-Boltzmann solver for calculating electrostatics in biomolecular systems

A Fortran program package is introduced for rapid evaluation of the electrostatic potentials and forces in biomolecular systems modeled by the linearized Poisson-Boltzmann equation. The numerical solver utilizes a well-conditioned boundary integral equation (BIE) formulation, a node-patch discretization scheme, a Krylov subspace iterative solver package with reverse communication protocols, and an adaptive new version of fast multipole method in which the exponential expansions are used to diagonalize the multipole to local translations. The program and its full description, as well as several closely related libraries and utility tools are available at http://lsec.cc.ac.cn/lubz/afmpb.html and a mirror site at http://mccammon.ucsd.edu/. This paper is a brief summary of the program: the algorithms, the implementation and the usage.

[1]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[2]  Andrew W. Appel,et al.  An Efficient Program for Many-Body Simulation , 1983 .

[3]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[4]  L. Greengard,et al.  Regular Article: A Fast Adaptive Multipole Algorithm in Three Dimensions , 1999 .

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  F M Richards,et al.  Areas, volumes, packing and protein structure. , 1977, Annual review of biophysics and bioengineering.

[7]  L. Greengard,et al.  A new version of the Fast Multipole Method for the Laplace equation in three dimensions , 1997, Acta Numerica.

[8]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[9]  M. Sanner,et al.  Reduced surface: an efficient way to compute molecular surfaces. , 1996, Biopolymers.

[10]  Vladimir Rokhlin,et al.  Solution of acoustic scattering problems by means of second kind integral equations , 1983 .

[11]  Nathan A. Baker,et al.  Adaptive multilevel finite element solution of the Poisson–Boltzmann equation I. Algorithms and examples , 2000 .

[12]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[13]  Benzhuo Lu,et al.  Order N algorithm for computation of electrostatic interactions in biomolecular systems , 2006, Proceedings of the National Academy of Sciences.

[14]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[15]  H. Berendsen,et al.  The electric potential of a macromolecule in a solvent: A fundamental approach , 1991 .

[16]  S Subramaniam,et al.  Computation of molecular electrostatics with boundary element methods. , 1997, Biophysical journal.

[17]  Jacob K. White,et al.  Fast methods for simulation of biomolecule electrostatics , 2002, ICCAD 2002.

[18]  Marcia O. Fenley,et al.  Fast Boundary Element Method for the Linear Poisson-Boltzmann Equation , 2002 .

[19]  Bo Zhang,et al.  FMM-Yukawa: An adaptive fast multipole method for screened Coulomb interactions , 2009, Comput. Phys. Commun..

[20]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[21]  J. Andrew McCammon,et al.  Computation of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation , 1993 .

[22]  L. Greengard,et al.  A new version of the fast multipole method for screened Coulomb interactions in three dimensions , 2002 .

[23]  Nathan A. Baker,et al.  Poisson-Boltzmann Methods for Biomolecular Electrostatics , 2004, Numerical Computer Methods, Part D.

[24]  James Shipman,et al.  Wave Motion , 2006 .

[25]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[26]  Benzhuo Lu,et al.  Improved Boundary Element Methods for Poisson-Boltzmann Electrostatic Potential and Force Calculations. , 2007, Journal of chemical theory and computation.