On minquantile and maxcovering optimisation

In this paper we introduce the parametric minquantile problem, a weighted generalisation ofkth maximum minimisation. It is shown that, under suitable quasiconvexity assumptions, its resolution can be reduced to solving a polynomial number of minmax problems.It is also shown how this simultaneously solves (parametric) maximal covering problems. It follows that bicriteria problems, where the aim is to both maximize the covering and minimize the cover-level, are reducible to a discrete problem, on which any multiple criteria method may be applied.