Flexible electronics for bio-signal monitoring in implantable applications

This paper presents flexible electronics with a bio-compatible material interface for bio-signal monitoring applications. Organic thin-film transistors (TFT) are integrated with the bio-compatible gel interface in a 1.2-μm-thick film substrate. An electrocardiogram (ECG) of a rat is amplified by an organic TFT amplifier circuit that is mounted directly on the surface of the heart. In addition to the flexible electronics implantation, an implantable wireless sensor is introduced in this report. Integration between the flexible organic electronics and the silicon devices produces a promising technology for next-generation internet-of-things (IoT) sensors.

[1]  Gaetano Scamarcio,et al.  Interfacial electronic effects in functional biolayers integrated into organic field-effect transistors , 2012, Proceedings of the National Academy of Sciences.

[2]  A. Lendlein,et al.  Shape-memory polymers. , 2002, Angewandte Chemie.

[3]  I. Kymissis,et al.  A Locally Amplified Strain Sensor Based on a Piezoelectric Polymer and Organic Field-Effect Transistors , 2011, IEEE Transactions on Electron Devices.

[4]  Rajesh P. N. Rao,et al.  Electrocorticography-based brain computer Interface-the seattle experience , 2006, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[5]  L. Fadiga,et al.  PEDOT-CNT-Coated Low-Impedance, Ultra-Flexible, and Brain-Conformable Micro-ECoG Arrays , 2015, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[6]  T. Someya,et al.  Flexible organic transistors and circuits with extreme bending stability. , 2010, Nature materials.

[7]  Benjamin R. Arenkiel,et al.  In Vivo Light-Induced Activation of Neural Circuitry in Transgenic Mice Expressing Channelrhodopsin-2 , 2007, Neuron.

[8]  Tingting Xu,et al.  Organic Bioelectronics , 2022 .

[9]  Hirata Masayuki,et al.  Implantable wireless 64-channel system with flexible ECoG electrode and optogenetics probe , 2016 .

[10]  Benjamin C. K. Tee,et al.  Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. , 2010, Nature materials.

[11]  Yung-Hui Yeh,et al.  Pseudo-CMOS: A Design Style for Low-Cost and Robust Flexible Electronics , 2011, IEEE Transactions on Electron Devices.

[12]  T. Someya,et al.  Large-Area Flexible Ultrasonic Imaging System With an Organic Transistor Active Matrix , 2010, IEEE Transactions on Electron Devices.

[13]  Takao Someya,et al.  Ultraflexible organic amplifier with biocompatible gel electrodes , 2016, Nature Communications.

[14]  Michiel Steyaert,et al.  A Fully Integrated $\Delta \Sigma$ ADC in Organic Thin-Film Transistor Technology on Flexible Plastic Foil , 2011, IEEE Journal of Solid-State Circuits.

[15]  Bozhi Tian,et al.  Nanowire transistor arrays for mapping neural circuits in acute brain slices , 2010, Proceedings of the National Academy of Sciences.

[16]  Brian Litt,et al.  Flexible, Foldable, Actively Multiplexed, High-Density Electrode Array for Mapping Brain Activity in vivo , 2011, Nature Neuroscience.

[17]  Wei Xiong,et al.  A 3-V, 6-Bit C-2C Digital-to-Analog Converter Using Complementary Organic Thin-Film Transistors on Glass , 2009, IEEE Journal of Solid-State Circuits.

[18]  Takao Someya,et al.  A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Karl Deisseroth,et al.  Optogenetics in Neural Systems , 2011, Neuron.

[20]  Makoto Ishida,et al.  An origami-inspired ultrastretchable bioprobe film device , 2016, 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS).

[21]  B. Schobert,et al.  Halorhodopsin is a light-driven chloride pump. , 1982, The Journal of biological chemistry.

[22]  Dermot Diamond,et al.  Organic electrochemical transistor incorporating anionogel as solid state electrolyte for lactate sensing , 2012 .

[23]  Wen Li,et al.  Opto-μECoG Array: A Hybrid Neural Interface With Transparent μECoG Electrode Array and Integrated LEDs for Optogenetics , 2013, IEEE Transactions on Biomedical Circuits and Systems.

[24]  Zhiwei Zhou,et al.  Stretchable EMI Measurement Sheet With 8 $\times$ 8 Coil Array, 2 V Organic CMOS Decoder, and 0.18$\ \mu$m Silicon CMOS LSIs for Electric and Magnetic Field Detection , 2010, IEEE Journal of Solid-State Circuits.

[25]  Kazuo Takimiya,et al.  Facile Synthesis of Highly π-Extended Heteroarenes, Dinaphtho[2,3-b:2‘,3‘-f]chalcogenopheno[3,2-b]chalcogenophenes, and Their Application to Field-Effect Transistors , 2007 .

[26]  G. Schalk,et al.  The emerging world of motor neuroprosthetics: a neurosurgical perspective. , 2006, Neurosurgery.

[27]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[28]  T. Kawano,et al.  Self-curling and -sticking flexible substrate for ECoG electrode array , 2013, 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS).

[29]  Yonggang Huang,et al.  Stretchable and Foldable Silicon Integrated Circuits , 2008, Science.

[30]  A. Yassar,et al.  All-Polymer Field-Effect Transistor Realized by Printing Techniques , 1994, Science.

[31]  T. Someya,et al.  Organic Pseudo-CMOS Circuits for Low-Voltage Large-Gain High-Speed Operation , 2011, IEEE Electron Device Letters.

[32]  Erik van Veenendaal,et al.  ADC design in organic thin-film electronics technology on plastic foil , 2011 .

[33]  George G. Malliaras,et al.  Influence of Device Geometry on Sensor Characteristics of Planar Organic Electrochemical Transistors , 2010, Advanced materials.